亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a Channel Distribution Information (CDI)-aware Generative Adversarial Network (GAN), designed to address the unique challenges of adversarial attacks in wireless communication systems. The generator in this CDI-aware GAN maps random input noise to the feature space, generating perturbations intended to deceive a target modulation classifier. Its discriminators play a dual role: one enforces that the perturbations follow a Gaussian distribution, making them indistinguishable from Gaussian noise, while the other ensures these perturbations account for realistic channel effects and resemble no-channel perturbations. Our proposed CDI-aware GAN can be used as an attacker and a defender. In attack scenarios, the CDI-aware GAN demonstrates its prowess by generating robust adversarial perturbations that effectively deceive the target classifier, outperforming known methods. Furthermore, CDI-aware GAN as a defender significantly improves the target classifier's resilience against adversarial attacks.

相關內容

Recent studies have uncovered the potential of Large Language Models (LLMs) in addressing complex sequential decision-making tasks through the provision of high-level instructions. However, LLM-based agents lack specialization in tackling specific target problems, particularly in real-time dynamic environments. Additionally, deploying an LLM-based agent in practical scenarios can be both costly and time-consuming. On the other hand, reinforcement learning (RL) approaches train agents that specialize in the target task but often suffer from low sampling efficiency and high exploration costs. In this paper, we introduce a novel framework that addresses these challenges by training a smaller, specialized student RL agent using instructions from an LLM-based teacher agent. By incorporating the guidance from the teacher agent, the student agent can distill the prior knowledge of the LLM into its own model. Consequently, the student agent can be trained with significantly less data. Moreover, through further training with environment feedback, the student agent surpasses the capabilities of its teacher for completing the target task. We conducted experiments on challenging MiniGrid and Habitat environments, specifically designed for embodied AI research, to evaluate the effectiveness of our framework. The results clearly demonstrate that our approach achieves superior performance compared to strong baseline methods. Our code is available at //github.com/ZJLAB-AMMI/LLM4Teach.

With the fast development of Deep Learning techniques, Named Entity Recognition (NER) is becoming more and more important in the information extraction task. The greatest difficulty that the NER task faces is to keep the detectability even when types of NE and documents are unfamiliar. Realizing that the specificity information may contain potential meanings of a word and generate semantic-related features for word embedding, we develop a distribution-aware word embedding and implement three different methods to make use of the distribution information in a NER framework. And the result shows that the performance of NER will be improved if the word specificity is incorporated into existing NER methods.

The success of AI assistants based on Language Models (LLMs) hinges on Reinforcement Learning from Human Feedback (RLHF) to comprehend and align with user intentions. However, traditional alignment algorithms, such as PPO, are hampered by complex annotation and training requirements. This reliance limits the applicability of RLHF and hinders the development of professional assistants tailored to diverse human preferences. In this work, we introduce \textit{Linear Alignment}, a novel algorithm that aligns language models with human preferences in one single inference step, eliminating the reliance on data annotation and model training. Linear alignment incorporates a new parameterization for policy optimization under divergence constraints, which enables the extraction of optimal policy in a closed-form manner and facilitates the direct estimation of the aligned response. Extensive experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment across diverse scenarios. Our code and dataset will be published on \url{//github.com/Wizardcoast/Linear_Alignment.git}.

With the advance of artificial intelligence (AI), the emergence of Google Gemini and OpenAI Q* marks the direction towards artificial general intelligence (AGI). To implement AGI, the concept of interactive AI (IAI) has been introduced, which can interactively understand and respond not only to human user input but also to dynamic system and network conditions. In this article, we explore an integration and enhancement of IAI in networking. We first comprehensively review recent developments and future perspectives of AI and then introduce the technology and components of IAI. We then explore the integration of IAI into the next-generation networks, focusing on how implicit and explicit interactions can enhance network functionality, improve user experience, and promote efficient network management. Subsequently, we propose an IAI-enabled network management and optimization framework, which consists of environment, perception, action, and brain units. We also design the pluggable large language model (LLM) module and retrieval augmented generation (RAG) module to build the knowledge base and contextual memory for decision-making in the brain unit. We demonstrate the effectiveness of the framework through case studies. Finally, we discuss potential research directions for IAI-based networks.

We propose Deep Dict, a deep learning-based lossy time series compressor designed to achieve a high compression ratio while maintaining decompression error within a predefined range. Deep Dict incorporates two essential components: the Bernoulli transformer autoencoder (BTAE) and a distortion constraint. BTAE extracts Bernoulli representations from time series data, reducing the size of the representations compared to conventional autoencoders. The distortion constraint limits the prediction error of BTAE to the desired range. Moreover, in order to address the limitations of common regression losses such as L1/L2, we introduce a novel loss function called quantized entropy loss (QEL). QEL takes into account the specific characteristics of the problem, enhancing robustness to outliers and alleviating optimization challenges. Our evaluation of Deep Dict across ten diverse time series datasets from various domains reveals that Deep Dict outperforms state-of-the-art lossy compressors in terms of compression ratio by a significant margin by up to 53.66%.

Neural construction models have shown promising performance for Vehicle Routing Problems (VRPs) by adopting either the Autoregressive (AR) or Non-Autoregressive (NAR) learning approach. While AR models produce high-quality solutions, they generally have a high inference latency due to their sequential generation nature. Conversely, NAR models generate solutions in parallel with a low inference latency but generally exhibit inferior performance. In this paper, we propose a generic Guided Non-Autoregressive Knowledge Distillation (GNARKD) method to obtain high-performance NAR models having a low inference latency. GNARKD removes the constraint of sequential generation in AR models while preserving the learned pivotal components in the network architecture to obtain the corresponding NAR models through knowledge distillation. We evaluate GNARKD by applying it to three widely adopted AR models to obtain NAR VRP solvers for both synthesized and real-world instances. The experimental results demonstrate that GNARKD significantly reduces the inference time (4-5 times faster) with acceptable performance drop (2-3\%). To the best of our knowledge, this study is first-of-its-kind to obtain NAR VRP solvers from AR ones through knowledge distillation.

We address a key challenge for neuro-symbolic (NeSy) systems by leveraging convex and bilevel optimization techniques to develop a general gradient-based framework for end-to-end neural and symbolic parameter learning. The applicability of our framework is demonstrated with NeuPSL, a state-of-the-art NeSy architecture. To achieve this, we propose a smooth primal and dual formulation of NeuPSL inference and show learning gradients are functions of the optimal dual variables. Additionally, we develop a dual block coordinate descent algorithm for the new formulation that naturally exploits warm-starts. This leads to over 100x learning runtime improvements over the current best NeuPSL inference method. Finally, we provide extensive empirical evaluations across $8$ datasets covering a range of tasks and demonstrate our learning framework achieves up to a 16% point prediction performance improvement over alternative learning methods.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司