Healthcare is becoming a more and more important research topic recently. With the growing data in the healthcare domain, it offers a great opportunity for deep learning to improve the quality of medical service. However, the complexity of electronic health records (EHR) data is a challenge for the application of deep learning. Specifically, the data produced in the hospital admissions are monitored by the EHR system, which includes structured data like daily body temperature, and unstructured data like free text and laboratory measurements. Although there are some preprocessing frameworks proposed for specific EHR data, the clinical notes that contain significant clinical value are beyond the realm of their consideration. Besides, whether these different data from various views are all beneficial to the medical tasks and how to best utilize these data remain unclear. Therefore, in this paper, we first extract the accompanying clinical notes from EHR and propose a method to integrate these data, we also comprehensively study the different models and the data leverage methods for better medical task prediction. The results on two medical prediction tasks show that our fused model with different data outperforms the state-of-the-art method that without clinical notes, which illustrates the importance of our fusion method and the value of clinical note features. Our code is available at https: //github.com/emnlp-mimic/mimic.
Humans usually perceive the world in a multimodal way that vision, touch, sound are utilised to understand surroundings from various dimensions. These senses are combined together to achieve a synergistic effect where the learning is more effectively than using each sense separately. For robotics, vision and touch are two key senses for the dexterous manipulation. Vision usually gives us apparent features like shape, color, and the touch provides local information such as friction, texture, etc. Due to the complementary properties between visual and tactile senses, it is desirable for us to combine vision and touch for a synergistic perception and manipulation. Many researches have been investigated about multimodal perception such as cross-modal learning, 3D reconstruction, multimodal translation with vision and touch. Specifically, we propose a cross-modal sensory data generation framework for the translation between vision and touch, which is able to generate realistic pseudo data. By using this cross-modal translation method, it is desirable for us to make up inaccessible data, helping us to learn the object's properties from different views. Recently, the attention mechanism becomes a popular method either in visual perception or in tactile perception. We propose a spatio-temporal attention model for tactile texture recognition, which takes both spatial features and time dimension into consideration. Our proposed method not only pays attention to the salient features in each spatial feature, but also models the temporal correlation in the through the time. The obvious improvement proves the efficiency of our selective attention mechanism. The spatio-temporal attention method has potential in many applications such as grasping, recognition, and multimodal perception.
The modern digital world is increasingly becoming multimodal. Although multimodal learning has recently revolutionized the state-of-the-art performance in multimodal tasks, relatively little is known about the robustness of multimodal learning in an adversarial setting. In this paper, we introduce a comprehensive measurement of the adversarial robustness of multimodal learning by focusing on the fusion of input modalities in multimodal models, via a framework called MUROAN (MUltimodal RObustness ANalyzer). We first present a unified view of multimodal models in MUROAN and identify the fusion mechanism of multimodal models as a key vulnerability. We then introduce a new type of multimodal adversarial attacks called decoupling attack in MUROAN that aims to compromise multimodal models by decoupling their fused modalities. We leverage the decoupling attack of MUROAN to measure several state-of-the-art multimodal models and find that the multimodal fusion mechanism in all these models is vulnerable to decoupling attacks. We especially demonstrate that, in the worst case, the decoupling attack of MUROAN achieves an attack success rate of 100% by decoupling just 1.16% of the input space. Finally, we show that traditional adversarial training is insufficient to improve the robustness of multimodal models with respect to decoupling attacks. We hope our findings encourage researchers to pursue improving the robustness of multimodal learning.
Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
An important step in early brain development study is to perform automatic segmentation of infant brain magnetic resonance (MR) images into cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) regions. This task is especially challenging in the isointense stage (approximately 6-8 months of age) when GM and WM exhibit similar levels of intensities in MR images. Deep learning has shown its great promise in various image segmentation tasks. However, existing models do not have an efficient and effective way to aggregate global information. They also suffer from information loss during up-sampling operations. In this work, we address these problems by proposing a global aggregation block, which can be flexibly used for global information fusion. We build a novel model based on 3D U-Net to make fast and accurate voxel-wise dense prediction. We perform thorough experiments, and results indicate that our model outperforms previous best models significantly on 3D multimodality isointense infant brain MR image segmentation.
In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.
The task of {\em data fusion} is to identify the true values of data items (eg, the true date of birth for {\em Tom Cruise}) among multiple observed values drawn from different sources (eg, Web sites) of varying (and unknown) reliability. A recent survey\cite{LDL+12} has provided a detailed comparison of various fusion methods on Deep Web data. In this paper, we study the applicability and limitations of different fusion techniques on a more challenging problem: {\em knowledge fusion}. Knowledge fusion identifies true subject-predicate-object triples extracted by multiple information extractors from multiple information sources. These extractors perform the tasks of entity linkage and schema alignment, thus introducing an additional source of noise that is quite different from that traditionally considered in the data fusion literature, which only focuses on factual errors in the original sources. We adapt state-of-the-art data fusion techniques and apply them to a knowledge base with 1.6B unique knowledge triples extracted by 12 extractors from over 1B Web pages, which is three orders of magnitude larger than the data sets used in previous data fusion papers. We show great promise of the data fusion approaches in solving the knowledge fusion problem, and suggest interesting research directions through a detailed error analysis of the methods.