亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a Combinatorial definition for the External Validity (EV) of intervention effects. We first define the concept of an effect observation 'background'. We then formulate conditions for effect generalization based on their sets of (observable and unobservable) backgrounds. This reveals two limits for effect generalization: (1) when effects are observed under all their enumerable backgrounds, or, (2) when backgrounds have become sufficiently randomized. We use the resulting combinatorial framework to re-examine several issues in the original counterfactual formulation: out-of-sample validity, concurrent estimation of multiple effects, bias-variance tradeoffs, statistical power, and connections to current predictive and explaining techniques. Methodologically, the definitions also allow us to also replace the parametric estimation problems that followed the counterfactual definition by combinatorial enumeration and randomization problems in non-experimental samples. We use this non-parametric framework to demonstrate (External Validity, Unconfoundness and Precision) tradeoffs in the performance of popular supervised, explaining, and causal-effect estimators. We demonstrate the approach also allows for the use of these methods in non-i.i.d. samples. The COVID19 pandemic highlighted the need for learning solutions to provide predictions in severally incomplete samples. We demonstrate applications in this pressing problem.

相關內容

Gaussian splatting, renowned for its exceptional rendering quality and efficiency, has emerged as a prominent technique in 3D scene representation. However, the substantial data volume of Gaussian splatting impedes its practical utility in real-world applications. Herein, we propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS), which harnesses compact Gaussian primitives for faithful 3D scene modeling with a remarkably reduced data size. To ensure the compactness of Gaussian primitives, we devise a hybrid primitive structure that captures predictive relationships between each other. Then, we exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms. Moreover, we develop a rate-constrained optimization scheme to eliminate redundancies within such hybrid primitives, steering our CompGS towards an optimal trade-off between bitrate consumption and representation efficacy. Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality. Our code will be released on GitHub for further research.

Since its inception, Rowhammer exploits have rapidly evolved into increasingly sophisticated threats not only compromising data integrity but also the control flow integrity of victim processes. Nevertheless, it remains a challenge for an attacker to identify vulnerable targets (i.e., Rowhammer gadgets), understand the outcome of the attempted fault, and formulate an attack that yields useful results. In this paper, we present a new type of Rowhammer gadget, called a LeapFrog gadget, which, when present in the victim code, allows an adversary to subvert code execution to bypass a critical piece of code (e.g., authentication check logic, encryption rounds, padding in security protocols). The Leapfrog gadget manifests when the victim code stores the Program Counter (PC) value in the user or kernel stack (e.g., a return address during a function call) which, when tampered with, re-positions the return address to a location that bypasses a security-critical code pattern. This research also presents a systematic process to identify Leapfrog gadgets. This methodology enables the automated detection of susceptible targets and the determination of optimal attack parameters. We first showcase this new attack vector through a practical demonstration on a TLS handshake client/server scenario, successfully inducing an instruction skip in a client application. We then demonstrate the attack on real-world code found in the wild, implementing an attack on OpenSSL. Our findings extend the impact of Rowhammer attacks on control flow and contribute to the development of more robust defenses against these increasingly sophisticated threats.

French and American participants listened to new music stimuli and evaluated the stimuli using either adjectives or quantitative musical dimensions. Results were analyzed using correspondence analysis (CA), hierarchical cluster analysis (HCA), multiple factor analysis (MFA), and partial least squares correlation (PLSC). French and American listeners differed when they described the musical stimuli using adjectives, but not when using the quantitative dimensions. The present work serves as a case study in research methodology that allows for a balance between relaxing experimental control and maintaining statistical rigor.

Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs. While the literature on RAG is growing, it primarily focuses on systematic reviews and comparisons of new state-of-the-art (SoTA) techniques against their predecessors, with a gap in extensive experimental comparisons. This study begins to address this gap by assessing various RAG methods' impacts on retrieval precision and answer similarity. We found that Hypothetical Document Embedding (HyDE) and LLM reranking significantly enhance retrieval precision. However, Maximal Marginal Relevance (MMR) and Cohere rerank did not exhibit notable advantages over a baseline Naive RAG system, and Multi-query approaches underperformed. Sentence Window Retrieval emerged as the most effective for retrieval precision, despite its variable performance on answer similarity. The study confirms the potential of the Document Summary Index as a competent retrieval approach. All resources related to this research are publicly accessible for further investigation through our GitHub repository ARAGOG (//github.com/predlico/ARAGOG). We welcome the community to further this exploratory study in RAG systems.

We propose SemGauss-SLAM, the first semantic SLAM system utilizing 3D Gaussian representation, that enables accurate 3D semantic mapping, robust camera tracking, and high-quality rendering in real-time. In this system, we incorporate semantic feature embedding into 3D Gaussian representation, which effectively encodes semantic information within the spatial layout of the environment for precise semantic scene representation. Furthermore, we propose feature-level loss for updating 3D Gaussian representation, enabling higher-level guidance for 3D Gaussian optimization. In addition, to reduce cumulative drift and improve reconstruction accuracy, we introduce semantic-informed bundle adjustment leveraging semantic associations for joint optimization of 3D Gaussian representation and camera poses, leading to more robust tracking and consistent mapping. Our SemGauss-SLAM method demonstrates superior performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in novel-view semantic synthesis and 3D semantic mapping.

Text simplification aims to make the text easier to understand by applying rewriting transformations. There has been very little research on Chinese text simplification for a long time. The lack of generic evaluation data is an essential reason for this phenomenon. In this paper, we introduce MCTS, a multi-reference Chinese text simplification dataset. We describe the annotation process of the dataset and provide a detailed analysis. Furthermore, we evaluate the performance of several unsupervised methods and advanced large language models. We additionally provide Chinese text simplification parallel data that can be used for training, acquired by utilizing machine translation and English text simplification. We hope to build a basic understanding of Chinese text simplification through the foundational work and provide references for future research. All of the code and data are released at //github.com/blcuicall/mcts/.

Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.

Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws \cite{kaplan2020scaling,hoffmann2022training}. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.

北京阿比特科技有限公司