Software start-ups are new companies aiming to launch an innovative product to mass markets fast with minimal resources. However, most start-ups fail before realizing their potential. Poor software engineering, among other factors, could be a significant contributor to the challenges that start-ups experience. Little is known about the engineering context in start-up companies. On the surface, start-ups are characterized by uncertainty, high risk, and minimal resources. However, such a characterization isn't granular enough to support identification of specific engineering challenges and to devise start-up-specific engineering practices. The first step toward an understanding of software engineering in start-ups is the definition of a Start-Up Context Map - a taxonomy of engineering practices, environment factors, and goals influencing the engineering process. This map aims to support further research on the field and serve as an engineering decision support tool for start-ups. This article is part of a theme issue on Process Improvement.
Traditional recommender systems have predominantly relied on identity representations (IDs) to characterize users and items. In contrast, the emergence of pre-trained language model (PLM) en-coders has significantly enriched the modeling of contextual item descriptions. While PLMs excel in addressing few-shot, zero-shot, and unified modeling scenarios, they often overlook the critical collaborative filtering signal. This omission gives rise to two pivotal challenges: (1) Collaborative Contextualization, aiming for the seamless integration of collaborative signals with contextual representations. (2) The necessity to bridge the representation gap between ID-based and contextual representations while preserving their contextual semantics. In this paper, we introduce CollabContext, a novel model that skillfully merges collaborative filtering signals with contextual representations, aligning these representations within the contextual space while retaining essential contextual semantics. Experimental results across three real-world datasets showcase substantial improvements. Through its capability in collaborative contextualization, CollabContext demonstrates remarkable enhancements in recommendation performance, particularly in cold-start scenarios. The code is available after the conference accepts the paper.
Motion sensors integrated into wearable and mobile devices provide valuable information about the device users. Machine learning and, recently, deep learning techniques have been used to characterize sensor data. Mostly, a single task, such as recognition of activities, is targeted, and the data is processed centrally at a server or in a cloud environment. However, the same sensor data can be utilized for multiple tasks and distributed machine-learning techniques can be used without the requirement of the transmission of data to a centre. This paper explores Federated Transfer Learning in a Multi-Task manner for both sensor-based human activity recognition and device position identification tasks. The OpenHAR framework is used to train the models, which contains ten smaller datasets. The aim is to obtain model(s) applicable for both tasks in different datasets, which may include only some label types. Multiple experiments are carried in the Flower federated learning environment using the DeepConvLSTM architecture. Results are presented for federated and centralized versions under different parameters and restrictions. By utilizing transfer learning and training a task-specific and personalized federated model, we obtained a similar accuracy with training each client individually and higher accuracy than a fully centralized approach.
Predicting future resource demand in Cloud Computing is essential for optimizing the trade-off between serving customers' requests efficiently and minimizing the provisioning cost. Modelling prediction uncertainty is also desirable to better inform the resource decision-making process, but research in this field is under-investigated. In this paper, we propose univariate and bivariate Bayesian deep learning models that provide predictions of future workload demand and its uncertainty. We run extensive experiments on Google and Alibaba clusters, where we first train our models with datasets from different cloud providers and compare them with LSTM-based baselines. Results show that modelling the uncertainty of predictions has a positive impact on performance, especially on service level metrics, because uncertainty quantification can be tailored to desired target service levels that are critical in cloud applications. Moreover, we investigate whether our models benefit transfer learning capabilities across different domains, i.e. dataset distributions. Experiments on the same workload datasets reveal that acceptable transfer learning performance can be achieved within the same provider (because distributions are more similar). Also, domain knowledge does not transfer when the source and target domains are very different (e.g. from different providers), but this performance degradation can be mitigated by increasing the training set size of the source domain.
Tactile sensing is a necessary capability for a robotic hand to perform fine manipulations and interact with the environment. Optical sensors are a promising solution for high-resolution contact estimation. Nevertheless, they are usually not easy to fabricate and require individual calibration in order to acquire sufficient accuracy. In this letter, we propose AllSight, an optical tactile sensor with a round 3D structure potentially designed for robotic in-hand manipulation tasks. AllSight is mostly 3D printed making it low-cost, modular, durable and in the size of a human thumb while with a large contact surface. We show the ability of AllSight to learn and estimate a full contact state, i.e., contact position, forces and torsion. With that, an experimental benchmark between various configurations of illumination and contact elastomers are provided. Furthermore, the robust design of AllSight provides it with a unique zero-shot capability such that a practitioner can fabricate the open-source design and have a ready-to-use state estimation model. A set of experiments demonstrates the accurate state estimation performance of AllSight.
Intentionally luring readers to click on a particular content by exploiting their curiosity defines a title as clickbait. Although several studies focused on detecting clickbait titles in English articles, low resource language like Bangla has not been given adequate attention. To tackle clickbait titles in Bangla, we have constructed the first Bangla clickbait detection dataset containing 15,056 labeled news articles and 65,406 unlabelled news articles extracted from clickbait dense news sites. Each article has been labeled by three expert linguists and includes an article's title, body, and other metadata. By incorporating labeled and unlabelled data, we finetune a pretrained Bangla transformer model in an adversarial fashion using Semi Supervised Generative Adversarial Networks (SS GANs). The proposed model acts as a good baseline for this dataset, outperforming traditional neural network models (LSTM, GRU, CNN) and linguistic feature based models. We expect that this dataset and the detailed analysis and comparison of these clickbait detection models will provide a fundamental basis for future research into detecting clickbait titles in Bengali articles. We have released the corresponding code and dataset.
Despite the proven effectiveness of Transformer neural networks across multiple domains, their performance with Electronic Health Records (EHR) can be nuanced. The unique, multidimensional sequential nature of EHR data can sometimes make even simple linear models with carefully engineered features more competitive. Thus, the advantages of Transformers, such as efficient transfer learning and improved scalability are not always fully exploited in EHR applications. Addressing these challenges, we introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data. In this work, we aim to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities. The challenge amplifies when dealing with divergent patient subgroups, like those with rare diseases, which are characterized by unique health trajectories and are typically smaller in size. To address this, we employ a self-supervised pretraining strategy, Generative Summary Pretraining (GSP), which predicts future summary statistics based on past health records of a patient. Our models are pretrained on a health registry of nearly one million patients, then fine-tuned for specific subgroup prediction tasks, showcasing the potential to handle the multifaceted nature of EHR data. In evaluation, SANSformer consistently surpasses robust EHR baselines, with our GSP pretraining method notably amplifying model performance, particularly within smaller patient subgroups. Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
Misinformation proliferation on social media platforms is a pervasive threat to the integrity of online public discourse. Genuine users, susceptible to others' influence, often unknowingly engage with, endorse, and re-share questionable pieces of information, collectively amplifying the spread of misinformation. In this study, we introduce an empirical framework to investigate users' susceptibility to influence when exposed to unreliable and reliable information sources. Leveraging two datasets on political and public health discussions on Twitter, we analyze the impact of exposure on the adoption of information sources, examining how the reliability of the source modulates this relationship. Our findings provide evidence that increased exposure augments the likelihood of adoption. Users tend to adopt low-credibility sources with fewer exposures than high-credibility sources, a trend that persists even among non-partisan users. Furthermore, the number of exposures needed for adoption varies based on the source credibility, with extreme ends of the spectrum (very high or low credibility) requiring fewer exposures for adoption. Additionally, we reveal that the adoption of information sources often mirrors users' prior exposure to sources with comparable credibility levels. Our research offers critical insights for mitigating the endorsement of misinformation by vulnerable users, offering a framework to study the dynamics of content exposure and adoption on social media platforms.
Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.