In this paper, the privacy of wireless transmissions is improved through the use of an efficient technique termed dynamic directional modulation (DDM), and is subsequently assessed in terms of the measure of information leakage. Recently, a variation of DDM termed low-power dynamic directional modulation (LPDDM) has attracted significant attention as a prominent secure transmission method due to its ability to further improve the privacy of wireless communications. Roughly speaking, this modulation operates by randomly selecting the transmitting antenna from an antenna array whose radiation pattern is well known. Thereafter, the modulator adjusts the constellation phase so as to ensure that only the legitimate receiver recovers the information. To begin with, we highlight some privacy boundaries inherent to the underlying system. In addition, we propose features that the antenna array must meet in order to increase the privacy of a wireless communication system. Last, we adopt a uniform circular monopole antenna array with equiprobable transmitting antennas in order to assess the impact of DDM on the information leakage. It is shown that the bit error rate, while being a useful metric in the evaluation of wireless communication systems, does not provide the full information about the vulnerability of the underlying system.
Encrypted mempools are a class of solutions aimed at preventing or reducing negative externalities of MEV extraction using cryptographic privacy. Mempool encryption aims to hide information related to pending transactions until a block including the transactions is committed, targeting the prevention of frontrunning and similar behaviour. Among the various methods of encryption, threshold schemes are particularly interesting for the design of MEV mitigation mechanisms, as their distributed nature and minimal hardware requirements harmonize with a broader goal of decentralization. This work looks beyond the formal and technical cryptographic aspects of threshold encryption schemes to focus on the market and incentive implications of implementing encrypted mempools as MEV mitigation techniques. In particular, this paper argues that the deployment of such protocols without proper consideration and understanding of market impact invites several undesired outcomes, with the ultimate goal of stimulating further analysis of this class of solutions outside of pure cryptograhic considerations. Included in the paper is an overview of a series of problems, various candidate solutions in the form of mempool encryption techniques with a focus on threshold encryption, potential drawbacks to these solutions, and Osmosis as a case study. The paper targets a broad audience and remains agnostic to blockchain design where possible while drawing from mostly financial examples.
Federated learning (FL) has emerged as a highly effective paradigm for privacy-preserving collaborative training among different parties. Unlike traditional centralized learning, which requires collecting data from each party, FL allows clients to share privacy-preserving information without exposing private datasets. This approach not only guarantees enhanced privacy protection but also facilitates more efficient and secure collaboration among multiple participants. Therefore, FL has gained considerable attention from researchers, promoting numerous surveys to summarize the related works. However, the majority of these surveys concentrate on methods sharing model parameters during the training process, while overlooking the potential of sharing other forms of local information. In this paper, we present a systematic survey from a new perspective, i.e., what to share in FL, with an emphasis on the model utility, privacy leakage, and communication efficiency. This survey differs from previous ones due to four distinct contributions. First, we present a new taxonomy of FL methods in terms of the sharing methods, which includes three categories of shared information: model sharing, synthetic data sharing, and knowledge sharing. Second, we analyze the vulnerability of different sharing methods to privacy attacks and review the defense mechanisms that provide certain privacy guarantees. Third, we conduct extensive experiments to compare the performance and communication overhead of various sharing methods in FL. Besides, we assess the potential privacy leakage through model inversion and membership inference attacks, while comparing the effectiveness of various defense approaches. Finally, we discuss potential deficiencies in current methods and outline future directions for improvement.
Growing robots based on the eversion principle are known for their ability to extend rapidly, from within, along their longitudinal axis, and, in doing so, reach deep into hitherto inaccessible, remote spaces. Despite many advantages, eversion robots also present significant challenges, one of which is maintaining sensory payload at the tip without restricting the eversion process. A variety of tip mechanisms has been proposed by the robotics community, among them rounded caps of relatively complex construction that are not always compatible with functional hardware, such as sensors or navigation pouches, integrated with the main eversion structure. Moreover, many tip designs incorporate rigid materials, reducing the robot's flexibility and consequent ability to navigate through narrow openings. Here, we address these shortcomings and propose a design to overcome them: a soft, entirely fabric based, cylindrical cap that can easily be slipped onto the tip of eversion robots. Having created a series of caps of different sizes and materials, an experimental study was conducted to evaluate our new design in terms of four key aspects: eversion robot made from multiple layers of everting material, solid objects protruding from the eversion robot, squeezability, and navigability. In all scenarios, we can show that our soft, flexible cap is robust in its ability to maintain its position and is capable of transporting payloads such as a camera across long distances.
Cluster-randomized experiments are increasingly used to evaluate interventions in routine practice conditions, and researchers often adopt model-based methods with covariate adjustment in the statistical analyses. However, the validity of model-based covariate adjustment is unclear when the working models are misspecified, leading to ambiguity of estimands and risk of bias. In this article, we first adapt two conventional model-based methods, generalized estimating equations and linear mixed models, with weighted g-computation to achieve robust inference for cluster-average and individual-average treatment effects. To further overcome the limitations of model-based covariate adjustment methods, we propose an efficient estimator for each estimand that allows for flexible covariate adjustment and additionally addresses cluster size variation dependent on treatment assignment and other cluster characteristics. Such cluster size variations often occur post-randomization and, if ignored, can lead to bias of model-based estimators. For our proposed efficient covariate-adjusted estimator, we prove that when the nuisance functions are consistently estimated by machine learning algorithms, the estimator is consistent, asymptotically normal, and efficient. When the nuisance functions are estimated via parametric working models, the estimator is triply-robust. Simulation studies and analyses of three real-world cluster-randomized experiments demonstrate that the proposed methods are superior to existing alternatives.
A biometric recognition system can operate in two distinct modes, identification or verification. In the first mode, the system recognizes an individual by searching the enrolled templates of all the users for a match. In the second mode, the system validates a user's identity claim by comparing the fresh provided template with the enrolled template. The biometric transformation schemes usually produce binary templates that are better handled by cryptographic schemes, and the comparison is based on a distance that leaks information about the similarities between two biometric templates. Both the experimentally determined false match rate and false non-match rate through recognition threshold adjustment define the recognition accuracy, and hence the security of the system. To the best of our knowledge, few works provide a formal treatment of the security under minimum leakage of information, i.e., the binary outcome of a comparison with a threshold. In this paper, we rely on probabilistic modelling to quantify the security strength of binary templates. We investigate the influence of template size, database size and threshold on the probability of having a near-collision. We highlight several untargeted attacks on biometric systems considering naive and adaptive adversaries. Interestingly, these attacks can be launched both online and offline and, both in the identification mode and in the verification mode. We discuss the choice of parameters through the generic presented attacks.
It is universally acknowledged that Wi-Fi communications are important to secure. Thus, the Wi-Fi Alliance published WPA3 in 2018 with a distinctive security feature: it leverages a Password-Authenticated Key Exchange (PAKE) protocol to protect users' passwords from offline dictionary attacks. Unfortunately, soon after its release, several attacks were reported against its implementations, in response to which the protocol was updated in a best-effort manner. In this paper, we show that the proposed mitigations are not enough, especially for a complex protocol to implement even for savvy developers. Indeed, we present **Dragondoom**, a collection of side-channel vulnerabilities of varying strength allowing attackers to recover users' passwords in widely deployed Wi-Fi daemons, such as hostap in its default settings. Our findings target both password conversion methods, namely the default probabilistic hunting-and-pecking and its newly standardized deterministic alternative based on SSWU. We successfully exploit our leakage in practice through microarchitectural mechanisms, and overcome the limited spatial resolution of Flush+Reload. Our attacks outperform previous works in terms of required measurements. Then, driven by the need to end the spiral of patch-and-hack in Dragonfly implementations, we propose **Dragonstar**, an implementation of Dragonfly leveraging a formally verified implementation of the underlying mathematical operations, thereby removing all the related leakage vector. Our implementation relies on HACL*, a formally verified crypto library guaranteeing secret-independence. We design Dragonstar, so that its integration within hostap requires minimal modifications to the existing project. Our experiments show that the performance of HACL*-based hostap is comparable to OpenSSL-based, implying that Dragonstar is both efficient and proved to be leakage-free.
This note is an attempt to unconditionally prove the existence of weak one way functions (OWF). Starting from a provably intractable decision problem $L_D$ (whose existence is nonconstructively assured from the well-known discrete time-hierarchy theorem from complexity theory), we construct another intractable decision problem $L\subseteq \{0,1\}^*$ that has its words scattered across $\{0,1\}^\ell$ at a relative frequency $p(\ell)$, for which upper and lower bounds can be worked out. The value $p(\ell)$ is computed from the density of the language within $\{0,1\}^\ell$ divided by the total word count $2^\ell$. It corresponds to the probability of retrieving a yes-instance of a decision problem upon a uniformly random draw from $\{0,1\}^\ell$. The trick to find a language with known bounds on $p(\ell)$ relies on switching from $L_D$ to $L_0:=L_D\cap L'$, where $L'$ is an easy-to-decide language with a known density across $\{0,1\}^*$. In defining $L'$ properly (and upon a suitable G\"odel numbering), the hardness of deciding $L_D\cap L'$ is inherited from $L_D$, while its density is controlled by that of $L'$. The lower and upper approximation of $p(\ell)$ then let us construct an explicit threshold function (as in random graph theory) that can be used to efficiently and intentionally sample yes- or no-instances of the decision problem (language) $L_0$ (however, without any auxiliary information that could ease the decision like a polynomial witness). In turn, this allows to construct a weak OWF that encodes a bit string $w\in\{0,1\}^*$ by efficiently (in polynomial time) emitting a sequence of randomly constructed intractable decision problems, whose answers correspond to the preimage $w$.
Video-based human pose transfer is a video-to-video generation task that animates a plain source human image based on a series of target human poses. Considering the difficulties in transferring highly structural patterns on the garments and discontinuous poses, existing methods often generate unsatisfactory results such as distorted textures and flickering artifacts. To address these issues, we propose a novel Deformable Motion Modulation (DMM) that utilizes geometric kernel offset with adaptive weight modulation to simultaneously perform feature alignment and style transfer. Different from normal style modulation used in style transfer, the proposed modulation mechanism adaptively reconstructs smoothed frames from style codes according to the object shape through an irregular receptive field of view. To enhance the spatio-temporal consistency, we leverage bidirectional propagation to extract the hidden motion information from a warped image sequence generated by noisy poses. The proposed feature propagation significantly enhances the motion prediction ability by forward and backward propagation. Both quantitative and qualitative experimental results demonstrate superiority over the state-of-the-arts in terms of image fidelity and visual continuity. The source code is publicly available at github.com/rocketappslab/bdmm.
We study the problem of exact support recovery for high-dimensional sparse linear regression under independent Gaussian design when the signals are weak, rare, and possibly heterogeneous. Under a suitable scaling of the sample size and signal sparsity, we fix the minimum signal magnitude at the information-theoretic optimal rate and investigate the asymptotic selection accuracy of best subset selection (BSS) and marginal screening (MS) procedures. We show that despite the ideal setup, somewhat surprisingly, marginal screening can fail to achieve exact recovery with probability converging to one in the presence of heterogeneous signals, whereas BSS enjoys model consistency whenever the minimum signal strength is above the information-theoretic threshold. To mitigate the computational intractability of BSS, we also propose an efficient two-stage algorithmic framework called ETS (Estimate Then Screen) comprised of an estimation step and gradient coordinate screening step, and under the same scaling assumption on sample size and sparsity, we show that ETS achieves model consistency under the same information-theoretic optimal requirement on the minimum signal strength as BSS. Finally, we present a simulation study comparing ETS with LASSO and marginal screening. The numerical results agree with our asymptotic theory even for realistic values of the sample size, dimension and sparsity.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.