We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover the true state, which is the solution of the PDE, from the biased data. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from sparse information for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only < 1\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.
Recently, deep neural networks (DNNs) have become powerful tools for solving inverse scattering problems. However, the approximation and generalization rates of DNNs for solving these problems remain largely under-explored. In this work, we introduce two types of combined DNNs (uncompressed and compressed) to reconstruct two coefficients in the Helmholtz equation for inverse scattering problems from the scattering data at two different frequencies. An analysis of the approximation and generalization capabilities of the proposed neural networks for simulating the regularized pseudo-inverses of the linearized forward operators in direct scattering problems is provided. The results show that, with sufficient training data and parameters, the proposed neural networks can effectively approximate the inverse process with desirable generalization. Preliminary numerical results show the feasibility of the proposed neural networks for recovering two types of isotropic inhomogeneous media. Furthermore, the trained neural network is capable of reconstructing the isotropic representation of certain types of anisotropic media.
We propose a method utilizing physics-informed neural networks (PINNs) to solve Poisson equations that serve as control variates in the computation of transport coefficients via fluctuation formulas, such as the Green--Kubo and generalized Einstein-like formulas. By leveraging approximate solutions to the Poisson equation constructed through neural networks, our approach significantly reduces the variance of the estimator at hand. We provide an extensive numerical analysis of the estimators and detail a methodology for training neural networks to solve these Poisson equations. The approximate solutions are then incorporated into Monte Carlo simulations as effective control variates, demonstrating the suitability of the method for moderately high-dimensional problems where fully deterministic solutions are computationally infeasible.
We prove that multilevel Picard approximations are capable of approximating solutions of semilinear heat equations in $L^{p}$-sense, ${p}\in [2,\infty)$, in the case of gradient-dependent, Lipschitz-continuous nonlinearities, while the computational effort of the multilevel Picard approximations grow at most polynomially in both dimension $d$ and prescribed reciprocal accuracy $\epsilon$.
We obtain rates of convergence of numerical approximations of linear parabolic evolution equations. Our estimates extend known results like Theorem 3.5 in \cite{thomee} to more general equations and accommodate more advanced numerical approximation techniques. As an example, we consider parabolic equations on surfaces, and surface finite element approximations.
We propose a numerical algorithm for the computation of multi-marginal optimal transport (MMOT) problems involving general probability measures that are not necessarily discrete. By developing a relaxation scheme in which marginal constraints are replaced by finitely many linear constraints and by proving a specifically tailored duality result for this setting, we approximate the MMOT problem by a linear semi-infinite optimization problem. Moreover, we are able to recover a feasible and approximately optimal solution of the MMOT problem, and its sub-optimality can be controlled to be arbitrarily close to 0 under mild conditions. The developed relaxation scheme leads to a numerical algorithm which can compute a feasible approximate optimizer of the MMOT problem whose theoretical sub-optimality can be chosen to be arbitrarily small. Besides the approximate optimizer, the algorithm is also able to compute both an upper bound and a lower bound for the optimal value of the MMOT problem. The difference between the computed bounds provides an explicit sub-optimality bound for the computed approximate optimizer. We demonstrate the proposed algorithm in three numerical experiments involving an MMOT problem that stems from fluid dynamics, the Wasserstein barycenter problem, and a large-scale MMOT problem with 100 marginals. We observe that our algorithm is capable of computing high-quality solutions of these MMOT problems and the computed sub-optimality bounds are much less conservative than their theoretical upper bounds in all the experiments.
We study the decidability and complexity of non-cooperative rational synthesis problem (abbreviated as NCRSP) for some classes of probabilistic strategies. We show that NCRSP for stationary strategies and Muller objectives is in 3-EXPTIME, and if we restrict the strategies of environment players to be positional, NCRSP becomes NEXPSPACE solvable. On the other hand, NCRSP_>, which is a variant of NCRSP, is shown to be undecidable even for pure finite-state strategies and terminal reachability objectives. Finally, we show that NCRSP becomes EXPTIME solvable if we restrict the memory of a strategy to be the most recently visited t vertices where t is linear in the size of the game.
The consensus problem in distributed computing involves a network of agents aiming to compute the average of their initial vectors through local communication, represented by an undirected graph. This paper focuses on the studying of this problem using an average-case analysis approach, particularly over regular graphs. Traditional algorithms for solving the consensus problem often rely on worst-case performance evaluation scenarios, which may not reflect typical performance in real-world applications. Instead, we apply average-case analysis, focusing on the expected spectral distribution of eigenvalues to obtain a more realistic view of performance. Key contributions include deriving the optimal method for consensus on regular graphs, showing its relation to the Heavy Ball method, analyzing its asymptotic convergence rate, and comparing it to various first-order methods through numerical experiments.
We present a rigorous convergence analysis of a new method for density-based topology optimization: Sigmoidal Mirror descent with a Projected Latent variable. SiMPL provides point-wise bound preserving design updates and faster convergence than other popular first-order topology optimization methods. Due to its strong bound preservation, the method is exceptionally robust, as demonstrated in numerous examples here and in a companion article. Furthermore, it is easy to implement with clear structure and analytical expressions for the updates. Our analysis covers two versions of the method, characterized by the employed line search strategies. We consider a modified Armijo backtracking line search and a Bregman backtracking line search. Regardless of the line search algorithm, SiMPL delivers a strict monotone decrease in the objective function and further intuitive convergence properties, e.g., strong and pointwise convergence of the density variables on the active sets, norm convergence to zero of the increments, and more. In addition, the numerical experiments demonstrate apparent mesh-independent convergence of the algorithm and superior performance over the two most popular first-order methods in topology optimization: OC and MMA.
We present a fully discrete Crank-Nicolson Fourier-spectral-Galerkin (FSG) scheme for approximating solutions of the fractional Korteweg-de Vries (KdV) equation, which involves a fractional Laplacian with exponent $\alpha \in [1,2]$ and a small dispersion coefficient of order $\varepsilon^2$. The solution in the limit as $\varepsilon \to 0$ is known as the zero dispersion limit. We demonstrate that the semi-discrete FSG scheme conserves the first three integral invariants, thereby structure preserving, and that the fully discrete FSG scheme is $L^2$-conservative, ensuring stability. Using a compactness argument, we constructively prove the convergence of the approximate solution to the unique solution of the fractional KdV equation in $C([0,T]; H_p^{1+\alpha}(\mathbb{R}))$ for the periodic initial data in $H_p^{1+\alpha}(\mathbb{R})$. The devised scheme achieves spectral accuracy for the initial data in $H_p^r,$ $r \geq 1+\alpha$ and exponential accuracy for the analytic initial data. Additionally, we establish that the approximation of the zero dispersion limit obtained from the fully discrete FSG scheme converges to the solution of the Hopf equation in $L^2$ as $\varepsilon \to 0$, up to the gradient catastrophe time $t_c$. Beyond $t_c$, numerical investigations reveal that the approximation converges to the asymptotic solution, which is weakly described by the Whitham's averaged equation within the oscillatory zone for $\alpha = 2$. Numerical results are provided to demonstrate the convergence of the scheme and to validate the theoretical findings.
We consider non-linear Bayesian inverse problems of determining the parameter $f$. For the posterior distribution with a class of Gaussian process priors, we study the statistical performance of variational Bayesian inference to the posterior with variational sets consisting of Gaussian measures or a mean-field family. We propose certain conditions on the forward map $\mathcal{G}$, the variational set $\mathcal{Q}$ and the prior such that, as the number $N$ of measurements increases, the resulting variational posterior distributions contract to the ground truth $f_0$ generating the data, and derive a convergence rate with polynomial order or logarithmic order. As specific examples, we consider a collection of non-linear inverse problems, including the Darcy flow problem, the inverse potential problem for a subdiffusion equation, and the inverse medium scattering problem. Besides, we show that our convergence rates are minimax optimal for these inverse problems.