亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper describes the system developed by the USTC-NELSLIP team for SemEval-2022 Task 11 Multilingual Complex Named Entity Recognition (MultiCoNER). We propose a gazetteer-adapted integration network (GAIN) to improve the performance of language models for recognizing complex named entities. The method first adapts the representations of gazetteer networks to those of language models by minimizing the KL divergence between them. After adaptation, these two networks are then integrated for backend supervised named entity recognition (NER) training. The proposed method is applied to several state-of-the-art Transformer-based NER models with a gazetteer built from Wikidata, and shows great generalization ability across them. The final predictions are derived from an ensemble of these trained models. Experimental results and detailed analysis verify the effectiveness of the proposed method. The official results show that our system ranked 1st on three tracks (Chinese, Code-mixed and Bangla) and 2nd on the other ten tracks in this task.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We consider the problem of kernel classification. Works on kernel regression have shown that the rate of decay of the prediction error with the number of samples for a large class of data-sets is well characterized by two quantities: the capacity and source of the data-set. In this work, we compute the decay rates for the misclassification (prediction) error under the Gaussian design, for data-sets satisfying source and capacity assumptions. We derive the rates as a function of the source and capacity coefficients for two standard kernel classification settings, namely margin-maximizing Support Vector Machines (SVM) and ridge classification, and contrast the two methods. As a consequence, we find that the known worst-case rates are loose for this class of data-sets. Finally, we show that the rates presented in this work are also observed on real data-sets.

Even though machine learning algorithms already play a significant role in data science, many current methods pose unrealistic assumptions on input data. The application of such methods is difficult due to incompatible data formats, or heterogeneous, hierarchical or entirely missing data fragments in the dataset. As a solution, we propose a versatile, unified framework called `HMill' for sample representation, model definition and training. We review in depth a multi-instance paradigm for machine learning that the framework builds on and extends. To theoretically justify the design of key components of HMill, we show an extension of the universal approximation theorem to the set of all functions realized by models implemented in the framework. The text also contains a detailed discussion on technicalities and performance improvements in our implementation, which is published for download under the MIT License. The main asset of the framework is its flexibility, which makes modelling of diverse real-world data sources with the same tool possible. Additionally to the standard setting in which a set of attributes is observed for each object individually, we explain how message-passing inference in graphs that represent whole systems of objects can be implemented in the framework. To support our claims, we solve three different problems from the cybersecurity domain using the framework. The first use case concerns IoT device identification from raw network observations. In the second problem, we study how malicious binary files can be classified using a snapshot of the operating system represented as a directed graph. The last provided example is a task of domain blacklist extension through modelling interactions between entities in the network. In all three problems, the solution based on the proposed framework achieves performance comparable to specialized approaches.

Performances of Handwritten Text Recognition (HTR) models are largely determined by the availability of labeled and representative training samples. However, in many application scenarios labeled samples are scarce or costly to obtain. In this work, we propose a self-training approach to train a HTR model solely on synthetic samples and unlabeled data. The proposed training scheme uses an initial model trained on synthetic data to make predictions for the unlabeled target dataset. Starting from this initial model with rather poor performance, we show that a considerable adaptation is possible by training against the predicted pseudo-labels. Moreover, the investigated self-training strategy does not require any manually annotated training samples. We evaluate the proposed method on four widely used benchmark datasets and show its effectiveness on closing the gap to a model trained in a fully-supervised manner.

We propose a multilingual adversarial training model for determining whether a sentence contains an idiomatic expression. Given that a key challenge with this task is the limited size of annotated data, our model relies on pre-trained contextual representations from different multi-lingual state-of-the-art transformer-based language models (i.e., multilingual BERT and XLM-RoBERTa), and on adversarial training, a training method for further enhancing model generalization and robustness. Without relying on any human-crafted features, knowledge bases, or additional datasets other than the target datasets, our model achieved competitive results and ranked 6th place in SubTask A (zero-shot) setting and 15th place in SubTask A (one-shot) setting.

Emotion Recognition in Conversations (ERC) is crucial in developing sympathetic human-machine interaction. In conversational videos, emotion can be present in multiple modalities, i.e., audio, video, and transcript. However, due to the inherent characteristics of these modalities, multi-modal ERC has always been considered a challenging undertaking. Existing ERC research focuses mainly on using text information in a discussion, ignoring the other two modalities. We anticipate that emotion recognition accuracy can be improved by employing a multi-modal approach. Thus, in this study, we propose a Multi-modal Fusion Network (M2FNet) that extracts emotion-relevant features from visual, audio, and text modality. It employs a multi-head attention-based fusion mechanism to combine emotion-rich latent representations of the input data. We introduce a new feature extractor to extract latent features from the audio and visual modality. The proposed feature extractor is trained with a novel adaptive margin-based triplet loss function to learn emotion-relevant features from the audio and visual data. In the domain of ERC, the existing methods perform well on one benchmark dataset but not on others. Our results show that the proposed M2FNet architecture outperforms all other methods in terms of weighted average F1 score on well-known MELD and IEMOCAP datasets and sets a new state-of-the-art performance in ERC.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司