亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Echocardiography has become an indispensable clinical imaging modality for general heart health assessment. From calculating biomarkers such as ejection fraction to the probability of a patient's heart failure, accurate segmentation of the heart and its structures allows doctors to plan and execute treatments with greater precision and accuracy. However, achieving accurate and robust left ventricle segmentation is time-consuming and challenging due to different reasons. This work introduces a novel approach for consistent left ventricular (LV) segmentation from sparsely annotated echocardiogram videos. We achieve this through (1) self-supervised learning (SSL) using temporal masking followed by (2) weakly supervised training. We investigate two different segmentation approaches: 3D segmentation and a novel 2D superimage (SI). We demonstrate how our proposed method outperforms the state-of-the-art solutions by achieving a 93.32% (95%CI 93.21-93.43%) dice score on a large-scale dataset (EchoNet-Dynamic) while being more efficient. To show the effectiveness of our approach, we provide extensive ablation studies, including pre-training settings and various deep learning backbones. Additionally, we discuss how our proposed methodology achieves high data utility by incorporating unlabeled frames in the training process. To help support the AI in medicine community, the complete solution with the source code will be made publicly available upon acceptance.

相關內容

We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. We make our data publicly available on HuggingFace (//huggingface.co/datasets/sean0042/KorMedMCQA) and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.

Developing a unified multi-task foundation model has become a critical challenge in computer vision research. In the current field of 3D computer vision, most datasets only focus on single task, which complicates the concurrent training requirements of various downstream tasks. In this paper, we introduce VEnvision3D, a large 3D synthetic perception dataset for multi-task learning, including depth completion, segmentation, upsampling, place recognition, and 3D reconstruction. Since the data for each task is collected in the same environmental domain, sub-tasks are inherently aligned in terms of the utilized data. Therefore, such a unique attribute can assist in exploring the potential for the multi-task model and even the foundation model without separate training methods. Meanwhile, capitalizing on the advantage of virtual environments being freely editable, we implement some novel settings such as simulating temporal changes in the environment and sampling point clouds on model surfaces. These characteristics enable us to present several new benchmarks. We also perform extensive studies on multi-task end-to-end models, revealing new observations, challenges, and opportunities for future research. Our dataset and code will be open-sourced upon acceptance.

Objectives: Our objective is to create an end-to-end system called AutoRD, which automates extracting information from clinical text about rare diseases. We have conducted various tests to evaluate the performance of AutoRD and highlighted its strengths and limitations in this paper. Materials and Methods: Our system, AutoRD, is a software pipeline involving data preprocessing, entity extraction, relation extraction, entity calibration, and knowledge graph construction. We implement this using large language models and medical knowledge graphs developed from open-source medical ontologies. We quantitatively evaluate our system on entity extraction, relation extraction, and the performance of knowledge graph construction. Results: AutoRD achieves an overall F1 score of 47.3%, a 14.4% improvement compared to the base LLM. In detail, AutoRD achieves an overall entity extraction F1 score of 56.1% (rare_disease: 83.5%, disease: 35.8%, symptom_and_sign: 46.1%, anaphor: 67.5%) and an overall relation extraction F1 score of 38.6% (produces: 34.7%, increases_risk_of: 12.4%, is_a: 37.4%, is_acronym: 44.1%, is_synonym: 16.3%, anaphora: 57.5%). Our qualitative experiment also demonstrates that the performance in constructing the knowledge graph is commendable. Discussion: AutoRD demonstrates the potential of LLM applications in rare disease detection. This improvement is attributed to several design, including the integration of ontologies-enhanced LLMs. Conclusion: AutoRD is an automated end-to-end system for extracting rare disease information from text to build knowledge graphs. It uses ontologies-enhanced LLMs for a robust medical knowledge base. The superior performance of AutoRD is validated by experimental evaluations, demonstrating the potential of LLMs in healthcare.

Background: Frailty, a state of increased vulnerability to adverse health outcomes, has garnered significant attention in research and clinical practice. Existing constructs aggregate clinical features or health deficits into a single score. While simple and interpretable, this approach may overlook the complexity of frailty and not capture the full range of variation between individuals. Methods: Exploratory factor analysis was used to infer latent dimensions of a frailty index constructed using survey data from the English Longitudinal Study of Ageing (ELSA), wave 9. The dataset included 58 self-reported health deficits in a representative sample of community-dwelling adults aged 65+ (N = 4971). Deficits encompassed chronic disease, general health status, mobility, independence with activities of daily living, psychological wellbeing, memory and cognition. Multiple linear regression examined associations with CASP-19 quality of life scores. Results: Factor analysis revealed four frailty subdimensions. Based on the component deficits with the highest loading values, these factors were labelled "Mobility Impairment and Physical Morbidity", "Difficulties in Daily Activities", "Mental Health" and "Disorientation in Time". The four subdimensions were a better predictor of quality of life than frailty index scores. Conclusions: Distinct subdimensions of frailty can be identified from standard index scores. A decomposed approach to understanding frailty has potential to provide a more nuanced understanding of an individual's state of health across multiple deficits.

The multi-modality and stochastic characteristics of human behavior make motion prediction a highly challenging task, which is critical for autonomous driving. While deep learning approaches have demonstrated their great potential in this area, it still remains unsolved to establish a connection between multiple driving scenes (e.g., merging, roundabout, intersection) and the design of deep learning models. Current learning-based methods typically use one unified model to predict trajectories in different scenarios, which may result in sub-optimal results for one individual scene. To address this issue, we propose Multi-Scenes Network (aka. MS-Net), which is a multi-path sparse model trained by an evolutionary process. MS-Net selectively activates a subset of its parameters during the inference stage to produce prediction results for each scene. In the training stage, the motion prediction task under differentiated scenes is abstracted as a multi-task learning problem, an evolutionary algorithm is designed to encourage the network search of the optimal parameters for each scene while sharing common knowledge between different scenes. Our experiment results show that with substantially reduced parameters, MS-Net outperforms existing state-of-the-art methods on well-established pedestrian motion prediction datasets, e.g., ETH and UCY, and ranks the 2nd place on the INTERACTION challenge.

Deep neural network (DNN) typically involves convolutions, pooling, and activation function. Due to the growing concern about privacy, privacy-preserving DNN becomes a hot research topic. Generally, the convolution and pooling operations can be supported by additive homomorphic and secure comparison, but the secure implementation of activation functions is not so straightforward for the requirements of accuracy and efficiency, especially for the non-linear ones such as exponential, sigmoid, and tanh functions. This paper pays a special attention to the implementation of such non-linear functions in semi-honest model with two-party settings, for which SIRNN is the current state-of-the-art. Different from previous works, we proposed improved implementations for these functions by using their intrinsic features as well as worthy tiny tricks. At first, we propose a novel and efficient protocol for exponential function by using a divide-and-conquer strategy with most of the computations executed locally. Exponential protocol is widely used in machine learning tasks such as Poisson regression, and is also a key component of sigmoid and tanh functions. Next, we take advantage of the symmetry of sigmoid and Tanh, and fine-tune the inputs to reduce the 2PC building blocks, which helps to save overhead and improve performance. As a result, we implement these functions with fewer fundamental building blocks. The comprehensive evaluations show that our protocols achieve state-of-the-art precision while reducing run-time by approximately 57%, 44%, and 42% for exponential (with only negative inputs), sigmoid, and Tanh functions, respectively.

Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司