亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any $n \times n$ matrix pencil $(A,B)$. The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel, and Dumitriu [Technical Report 2010]. We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability provided the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni, and Srivastava [Foundations of Computational Mathematics 2022]. In particular, we show that perturbing and scaling $(A,B)$ regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of $(A,B)$ in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible $S,T$ and diagonal $D$ such that $||A - SDT^{-1}||_2 \leq \varepsilon$ and $||B - ST^{-1}||_2 \leq \varepsilon$ in at most $O \left(\log^2 \left( \frac{n}{\varepsilon} \right) T_{\text{MM}}(n) \right)$ operations, where $T_{\text{MM}}(n)$ is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of inverse-free, exact arithmetic matrix pencil diagonalization.

相關內容

We consider the problem of estimating the spectrum of a symmetric bounded entry (not necessarily PSD) matrix via entrywise sampling. This problem was introduced by [Bhattacharjee, Dexter, Drineas, Musco, Ray '22], where it was shown that one can obtain an $\epsilon n$ additive approximation to all eigenvalues of $A$ by sampling a principal submatrix of dimension $\frac{\text{poly}(\log n)}{\epsilon^3}$. We improve their analysis by showing that it suffices to sample a principal submatrix of dimension $\tilde{O}(\frac{1}{\epsilon^2})$ (with no dependence on $n$). This matches known lower bounds and therefore resolves the sample complexity of this problem up to $\log\frac{1}{\epsilon}$ factors. Using similar techniques, we give a tight $\tilde{O}(\frac{1}{\epsilon^2})$ bound for obtaining an additive $\epsilon\|A\|_F$ approximation to the spectrum of $A$ via squared row-norm sampling, improving on the previous best $\tilde{O}(\frac{1}{\epsilon^{8}})$ bound. We also address the problem of approximating the top eigenvector for a bounded entry, PSD matrix $A.$ In particular, we show that sampling $O(\frac{1}{\epsilon})$ columns of $A$ suffices to produce a unit vector $u$ with $u^T A u \geq \lambda_1(A) - \epsilon n$. This matches what one could achieve via the sampling bound of [Musco, Musco'17] for the special case of approximating the top eigenvector, but does not require adaptivity. As additional applications, we observe that our sampling results can be used to design a faster eigenvalue estimation sketch for dense matrices resolving a question of [Swartworth, Woodruff'23], and can also be combined with [Musco, Musco'17] to achieve $O(1/\epsilon^3)$ (adaptive) sample complexity for approximating the spectrum of a bounded entry PSD matrix to $\epsilon n$ additive error.

We introduce efficient differentially private (DP) algorithms for several linear algebraic tasks, including solving linear equalities over arbitrary fields, linear inequalities over the reals, and computing affine spans and convex hulls. As an application, we obtain efficient DP algorithms for learning halfspaces and affine subspaces. Our algorithms addressing equalities are strongly polynomial, whereas those addressing inequalities are weakly polynomial. Furthermore, this distinction is inevitable: no DP algorithm for linear programming can be strongly polynomial-time efficient.

Matrix sketching, aimed at approximating a matrix $\boldsymbol{A} \in \mathbb{R}^{N\times d}$ consisting of vector streams of length $N$ with a smaller sketching matrix $\boldsymbol{B} \in \mathbb{R}^{\ell\times d}, \ell \ll N$, has garnered increasing attention in fields such as large-scale data analytics and machine learning. A well-known deterministic matrix sketching method is the Frequent Directions algorithm, which achieves the optimal $O\left(\frac{d}{\varepsilon}\right)$ space bound and provides a covariance error guarantee of $\varepsilon = \lVert \boldsymbol{A}^\top \boldsymbol{A} - \boldsymbol{B}^\top \boldsymbol{B} \rVert_2/\lVert \boldsymbol{A} \rVert_F^2$. The matrix sketching problem becomes particularly interesting in the context of sliding windows, where the goal is to approximate the matrix $\boldsymbol{A}_W$, formed by input vectors over the most recent $N$ time units. However, despite recent efforts, whether achieving the optimal $O\left(\frac{d}{\varepsilon}\right)$ space bound on sliding windows is possible has remained an open question. In this paper, we introduce the DS-FD algorithm, which achieves the optimal $O\left(\frac{d}{\varepsilon}\right)$ space bound for matrix sketching over row-normalized, sequence-based sliding windows. We also present matching upper and lower space bounds for time-based and unnormalized sliding windows, demonstrating the generality and optimality of \dsfd across various sliding window models. This conclusively answers the open question regarding the optimal space bound for matrix sketching over sliding windows. Furthermore, we conduct extensive experiments with both synthetic and real-world datasets, validating our theoretical claims and thus confirming the correctness and effectiveness of our algorithm, both theoretically and empirically.

This paper proposes a novel collocation-type numerical stochastic homogenization method for prototypical stochastic homogenization problems with random coefficient fields of small correlation lengths. The presented method is based on a recently introduced localization technique that enforces a super-exponential decay of the basis functions relative to the underlying coarse mesh, resulting in considerable computational savings during the sampling phase. More generally, the collocation-type structure offers a particularly simple and computationally efficient construction in the stochastic setting with minimized communication between the patches where the basis functions of the method are computed. An error analysis that bridges numerical homogenization and the quantitative theory of stochastic homogenization is performed. In a series of numerical experiments, we study the effect of the correlation length and the discretization parameters on the approximation quality of the method.

We present a novel algorithm for real-time planar semantic mapping tailored for humanoid robots navigating complex terrains such as staircases. Our method is adaptable to any odometry input and leverages GPU-accelerated processes for planar extraction, enabling the rapid generation of globally consistent semantic maps. We utilize an anisotropic diffusion filter on depth images to effectively minimize noise from gradient jumps while preserving essential edge details, enhancing normal vector images' accuracy and smoothness. Both the anisotropic diffusion and the RANSAC-based plane extraction processes are optimized for parallel processing on GPUs, significantly enhancing computational efficiency. Our approach achieves real-time performance, processing single frames at rates exceeding $30~Hz$, which facilitates detailed plane extraction and map management swiftly and efficiently. Extensive testing underscores the algorithm's capabilities in real-time scenarios and demonstrates its practical application in humanoid robot gait planning, significantly improving its ability to navigate dynamic environments.

Gaussian graphical regressions have emerged as a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which, unlike traditional Gaussian graphical models, can help determine how graphs are modulated by high dimensional subject-level covariates, and recover both the population-level and subject-level graphs. To fit the model, a multi-task learning approach {achieves} %has been shown to result in lower error rates compared to node-wise regressions. However, due to the high complexity and dimensionality of the Gaussian graphical regression problem, the important task of statistical inference remains unexplored. We propose a class of debiased estimators based on multi-task learners for statistical inference in Gaussian graphical regressions. We show that debiasing can be performed quickly and separately for the multi-task learners. In a key debiasing step {that estimates} %involving the estimation of the inverse covariance matrix, we propose a novel {projection technique} %diagonalization approach that dramatically reduces computational costs {in optimization} to scale only with the sample size $n$. We show that our debiased estimators enjoy a fast convergence rate and asymptotically follow a normal distribution, enabling valid statistical inference such as constructing confidence intervals and performing hypothesis testing. Simulation studies confirm the practical utility of the proposed approach, and we further apply it to analyze gene co-expression graph data from a brain cancer study, revealing meaningful biological relationships.

The greedy algorithm adapted from Kruskal's algorithm is an efficient and folklore way to produce a $k$-spanner with girth at least $k+2$. The greedy algorithm has shown to be `existentially optimal', while it's not `universally optimal' for any constant $k$. Here, `universal optimality' means an algorithm can produce the smallest $k$-spanner $H$ given any $n$-vertex input graph $G$. However, how well the greedy algorithm works compared to `universal optimality' is still unclear for superconstant $k:=k(n)$. In this paper, we aim to give a new and fine-grained analysis of this problem in undirected unweighted graph setting. Specifically, we show some bounds on this problem including the following two (1) On the negative side, when $k<\frac{1}{3}n-O(1)$, the greedy algorithm is not `universally optimal'. (2) On the positive side, when $k>\frac{2}{3}n+O(1)$, the greedy algorithm is `universally optimal'. We also introduce an appropriate notion for `approximately universal optimality'. An algorithm is $(\alpha,\beta)$-universally optimal iff given any $n$-vertex input graph $G$, it can produce a $k$-spanner $H$ of $G$ with size $|H|\leq n+\alpha(|H^*|-n)+\beta$, where $H^*$ is the smallest $k$-spanner of $G$. We show the following positive bounds. (1) When $k>\frac{4}{7}n+O(1)$, the greedy algorithm is $(2,O(1))$-universally optimal. (2) When $k>\frac{12}{23}n+O(1)$, the greedy algorithm is $(18,O(1))$-universally optimal. (3) When $k>\frac{1}{2}n+O(1)$, the greedy algorithm is $(32,O(1))$-universally optimal. All our proofs are constructive building on new structural analysis on spanners. We give some ideas about how to break small cycles in a spanner to increase the girth. These ideas may help us to understand the relation between girth and spanners.

Using statistical learning methods to analyze stochastic simulation outputs can significantly enhance decision-making by uncovering relationships between different simulated systems and between a system's inputs and outputs. We focus on clustering multivariate empirical distributions of simulation outputs to identify patterns and trade-offs among performance measures. We present a novel agglomerative clustering algorithm that utilizes the regularized Wasserstein distance to cluster these multivariate empirical distributions. This framework has several important use cases, including anomaly detection, pre-optimization, and online monitoring. In numerical experiments involving a call-center model, we demonstrate how this methodology can identify staffing plans that yield similar performance outcomes and inform policies for intervening when queue lengths signal potentially worsening system performance.

Solving algebra problems (APs) continues to attract significant research interest as evidenced by the large number of algorithms and theories proposed over the past decade. Despite these important research contributions, however, the body of work remains incomplete in terms of theoretical justification and scope. The current contribution intends to fill the gap by developing a review framework that aims to lay a theoretical base, create an evaluation scheme, and extend the scope of the investigation. This paper first develops the State Transform Theory (STT), which emphasizes that the problem-solving algorithms are structured according to states and transforms unlike the understanding that underlies traditional surveys which merely emphasize the progress of transforms. The STT, thus, lays the theoretical basis for a new framework for reviewing algorithms. This new construct accommodates the relation-centric algorithms for solving both word and diagrammatic algebra problems. The latter not only highlights the necessity of introducing new states but also allows revelation of contributions of individual algorithms obscured in prior reviews without this approach.

This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.

北京阿比特科技有限公司