Future generations of wireless networks will offer newfangled performance via unprecedented solutions: the metasurface innovation will drive such a revolution by posing control onto the surrounding propagation environment, always portrayed as a tamper-proof black-box. The RIS technology, envisioned as the discrete version of a metasurface, can be dynamically configured to alter the propagation properties of the impinging signals by, e.g., steering the corresponding beams towards defined directions. This will unlock new application opportunities and deliver advanced end-user services. However, this fascinating solution comes at not negligible costs: RIS require ad-hoc design, deployment and management operations to be fully exploited. In this paper, we tackle the RIS placement problem from a theoretical viewpoint, showcasing a large-scale solution on synthetic topologies to improve communication performance while solving the "dead-zone" problem. Additionally, our mathematical framework is empirically validated within a realistic indoor scenario, the Rennes railway station, showing how a complex indoor propagation environment can be fully disciplined by an advanced RIS installation.
Neural networks have had discernible achievements in a wide range of applications. The wide-spread adoption also raises the concern of their dependability and reliability. Similar to traditional decision-making programs, neural networks can have defects that need to be repaired. The defects may cause unsafe behaviors, raise security concerns or unjust societal impacts. In this work, we address the problem of repairing a neural network for desirable properties such as fairness and the absence of backdoor. The goal is to construct a neural network that satisfies the property by (minimally) adjusting the given neural network's parameters (i.e., weights). Specifically, we propose CARE (\textbf{CA}usality-based \textbf{RE}pair), a causality-based neural network repair technique that 1) performs causality-based fault localization to identify the `guilty' neurons and 2) optimizes the parameters of the identified neurons to reduce the misbehavior. We have empirically evaluated CARE on various tasks such as backdoor removal, neural network repair for fairness and safety properties. Our experiment results show that CARE is able to repair all neural networks efficiently and effectively. For fairness repair tasks, CARE successfully improves fairness by $61.91\%$ on average. For backdoor removal tasks, CARE reduces the attack success rate from over $98\%$ to less than $1\%$. For safety property repair tasks, CARE reduces the property violation rate to less than $1\%$. Results also show that thanks to the causality-based fault localization, CARE's repair focuses on the misbehavior and preserves the accuracy of the neural networks.
Computer models are widely used in decision support for energy systems operation, planning and policy. A system of models is often employed, where model inputs themselves arise from other computer models, with each model being developed by different teams of experts. Gaussian Process emulators can be used to approximate the behaviour of complex, computationally intensive models and used to generate predictions together with a measure of uncertainty about the predicted model output. This paper presents a computationally efficient framework for propagating uncertainty within a network of models with high-dimensional outputs used for energy planning. We present a case study from a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. The system model considered for this case study is simple, however the framework can be applied to larger networks of more complex models.
Recent work has demonstrated that motion planners' performance can be significantly improved by retrieving past experiences from a database. Typically, the experience database is queried for past similar problems using a similarity function defined over the motion planning problems. However, to date, most works rely on simple hand-crafted similarity functions and fail to generalize outside their corresponding training dataset. To address this limitation, we propose (FIRE), a framework that extracts local representations of planning problems and learns a similarity function over them. To generate the training data we introduce a novel self-supervised method that identifies similar and dissimilar pairs of local primitives from past solution paths. With these pairs, a Siamese network is trained with the contrastive loss and the similarity function is realized in the network's latent space. We evaluate FIRE on an 8-DOF manipulator in five categories of motion planning problems with sensed environments. Our experiments show that FIRE retrieves relevant experiences which can informatively guide sampling-based planners even in problems outside its training distribution, outperforming other baselines.
The shift towards end-to-end deep learning has brought unprecedented advances in many areas of computer vision. However, deep neural networks are trained on images with resolutions that rarely exceed $1,000 \times 1,000$ pixels. The growing use of scanners that create images with extremely high resolutions (average can be $100,000 \times 100,000$ pixels) thereby presents novel challenges to the field. Most of the published methods preprocess high-resolution images into a set of smaller patches, imposing an a priori belief on the best properties of the extracted patches (magnification, field of view, location, etc.). Herein, we introduce Magnifying Networks (MagNets) as an alternative deep learning solution for gigapixel image analysis that does not rely on a preprocessing stage nor requires the processing of billions of pixels. MagNets can learn to dynamically retrieve any part of a gigapixel image, at any magnification level and field of view, in an end-to-end fashion with minimal ground truth (a single global, slide-level label). Our results on the publicly available Camelyon16 and Camelyon17 datasets corroborate to the effectiveness and efficiency of MagNets and the proposed optimization framework for whole slide image classification. Importantly, MagNets process far less patches from each slide than any of the existing approaches ($10$ to $300$ times less).
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
As technology advances, the need for safe, efficient, and collaborative human-robot-teams has become increasingly important. One of the most fundamental collaborative tasks in any setting is the object handover. Human-to-robot handovers can take either of two approaches: (1) direct hand-to-hand or (2) indirect hand-to-placement-to-pick-up. The latter approach ensures minimal contact between the human and robot but can also result in increased idle time due to having to wait for the object to first be placed down on a surface. To minimize such idle time, the robot must preemptively predict the human intent of where the object will be placed. Furthermore, for the robot to preemptively act in any sort of productive manner, predictions and motion planning must occur in real-time. We introduce a novel prediction-planning pipeline that allows the robot to preemptively move towards the human agent's intended placement location using gaze and gestures as model inputs. In this paper, we investigate the performance and drawbacks of our early intent predictor-planner as well as the practical benefits of using such a pipeline through a human-robot case study.
Leveraging line features to improve localization accuracy of point-based visual-inertial SLAM (VINS) is gaining interest as they provide additional constraints on scene structure. However, real-time performance when incorporating line features in VINS has not been addressed. This paper presents PL-VINS, a real-time optimization-based monocular VINS method with point and line features, developed based on the state-of-the-art point-based VINS-Mono \cite{vins}. We observe that current works use the LSD \cite{lsd} algorithm to extract line features; however, LSD is designed for scene shape representation instead of the pose estimation problem, which becomes the bottleneck for the real-time performance due to its high computational cost. In this paper, a modified LSD algorithm is presented by studying a hidden parameter tuning and length rejection strategy. The modified LSD can run at least three times as fast as LSD. Further, by representing space lines with the Pl\"{u}cker coordinates, the residual error in line estimation is modeled in terms of the point-to-line distance, which is then minimized by iteratively updating the minimum four-parameter orthonormal representation of the Pl\"{u}cker coordinates. Experiments in a public benchmark dataset show that the localization error of our method is 12-16\% less than that of VINS-Mono at the same pose update frequency. %For the benefit of the community, The source code of our method is available at: //github.com/cnqiangfu/PL-VINS.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.