This paper presents RaceLens, a novel application utilizing advanced deep learning and computer vision models for comprehensive analysis of racing photos. The developed models have demonstrated their efficiency in a wide array of tasks, including detecting racing cars, recognizing car numbers, detecting and quantifying car details, and recognizing car orientations. We discuss the process of collecting a robust dataset necessary for training our models, and describe an approach we have designed to augment and improve this dataset continually. Our method leverages a feedback loop for continuous model improvement, thus enhancing the performance and accuracy of RaceLens over time. A significant part of our study is dedicated to illustrating the practical application of RaceLens, focusing on its successful deployment by NASCAR teams over four seasons. We provide a comprehensive evaluation of our system's performance and its direct impact on the team's strategic decisions and performance metrics. The results underscore the transformative potential of machine intelligence in the competitive and dynamic world of car racing, setting a precedent for future applications.
We present LaMPilot, a novel framework for planning in the field of autonomous driving, rethinking the task as a code-generation process that leverages established behavioral primitives. This approach aims to address the challenge of interpreting and executing spontaneous user instructions such as "overtake the car ahead," which have typically posed difficulties for existing frameworks. We introduce the LaMPilot benchmark specifically designed to quantitatively evaluate the efficacy of Large Language Models (LLMs) in translating human directives into actionable driving policies. We then evaluate a wide range of state-of-the-art code generation language models on tasks from the LaMPilot Benchmark. The results of the experiments showed that GPT-4, with human feedback, achieved an impressive task completion rate of 92.7% and a minimal collision rate of 0.9%. To encourage further investigation in this area, our code and dataset will be made available.
In recent years, knowledge distillation methods based on contrastive learning have achieved promising results on image classification and object detection tasks. However, in this line of research, we note that less attention is paid to semantic segmentation. Existing methods heavily rely on data augmentation and memory buffer, which entail high computational resource demands when applying them to handle semantic segmentation that requires to preserve high-resolution feature maps for making dense pixel-wise predictions. In order to address this problem, we present Augmentation-free Dense Contrastive Knowledge Distillation (Af-DCD), a new contrastive distillation learning paradigm to train compact and accurate deep neural networks for semantic segmentation applications. Af-DCD leverages a masked feature mimicking strategy, and formulates a novel contrastive learning loss via taking advantage of tactful feature partitions across both channel and spatial dimensions, allowing to effectively transfer dense and structured local knowledge learnt by the teacher model to a target student model while maintaining training efficiency. Extensive experiments on five mainstream benchmarks with various teacher-student network pairs demonstrate the effectiveness of our approach. For instance, the DeepLabV3-Res18|DeepLabV3-MBV2 model trained by Af-DCD reaches 77.03%|76.38% mIOU on Cityscapes dataset when choosing DeepLabV3-Res101 as the teacher, setting new performance records. Besides that, Af-DCD achieves an absolute mIOU improvement of 3.26%|3.04%|2.75%|2.30%|1.42% compared with individually trained counterpart on Cityscapes|Pascal VOC|Camvid|ADE20K|COCO-Stuff-164K. Code is available at //github.com/OSVAI/Af-DCD
We present a novel machine-learning approach for detecting faint point sources in high-contrast adaptive optics imaging datasets. The most widely used algorithms for primary subtraction aim to decouple bright stellar speckle noise from planetary signatures by subtracting an approximation of the temporally evolving stellar noise from each frame in an imaging sequence. Our approach aims to improve the stellar noise approximation and increase the planet detection sensitivity by leveraging deep learning in a novel direct imaging post-processing algorithm. We show that a convolutional autoencoder neural network, trained on an extensive reference library of real imaging sequences, accurately reconstructs the stellar speckle noise at the location of a potential planet signal. This tool is used in a post-processing algorithm we call Direct Exoplanet Detection with Convolutional Image Reconstruction, or ConStruct. The reliability and sensitivity of ConStruct are assessed using real Keck/NIRC2 angular differential imaging datasets. Of the 30 unique point sources we examine, ConStruct yields a higher S/N than traditional PCA-based processing for 67$\%$ of the cases and improves the relative contrast by up to a factor of 2.6. This work demonstrates the value and potential of deep learning to take advantage of a diverse reference library of point spread function realizations to improve direct imaging post-processing. ConStruct and its future improvements may be particularly useful as tools for post-processing high-contrast images from the James Webb Space Telescope and extreme adaptive optics instruments, both for the current generation and those being designed for the upcoming 30 meter-class telescopes.
Although advancements in machine learning have driven the development of malicious URL detection technology, current techniques still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, a novel method that integrates pretrained Transformers with pyramid feature learning to detect malicious URL. PyraTrans utilizes a pretrained CharBERT as its foundation and is augmented with three interconnected feature modules: 1) Encoder Feature Extraction, extracting multi-order feature matrices from each CharBERT encoder layer; 2) Multi-Scale Feature Learning, capturing local contextual insights at various scales and aggregating information across encoder layers; and 3) Spatial Pyramid Attention, focusing on regional-level attention to emphasize areas rich in expressive information. The proposed approach addresses the limitations of the Transformer in local feature learning and regional relational awareness, which are vital for capturing URL-specific word patterns, character combinations, or structural anomalies. In several challenging experimental scenarios, the proposed method has shown significant improvements in accuracy, generalization, and robustness in malicious URL detection. For instance, it achieved a peak F1-score improvement of 40% in class-imbalanced scenarios, and exceeded the best baseline result by 14.13% in accuracy in adversarial attack scenarios. Additionally, we conduct a case study where our method accurately identifies all 30 active malicious web pages, whereas two pior SOTA methods miss 4 and 7 malicious web pages respectively. Codes and data are available at://github.com/Alixyvtte/PyraTrans.
We present a novel framework for generating photorealistic 3D human head and subsequently manipulating and reposing them with remarkable flexibility. The proposed approach leverages an implicit function representation of 3D human heads, employing 3D Gaussians anchored on a parametric face model. To enhance representational capabilities and encode spatial information, we embed a lightweight tri-plane payload within each Gaussian rather than directly storing color and opacity. Additionally, we parameterize the Gaussians in a 2D UV space via a 3DMM, enabling effective utilization of the diffusion model for 3D head avatar generation. Our method facilitates the creation of diverse and realistic 3D human heads with fine-grained editing over facial features and expressions. Extensive experiments demonstrate the effectiveness of our method.
This paper presents a novel deep learning model based on the transformer architecture to predict the load-deformation behavior of large bored piles in Bangkok subsoil. The model encodes the soil profile and pile features as tokenization input, and generates the load-deformation curve as output. The model also incorporates the previous sequential data of load-deformation curve into the decoder to improve the prediction accuracy. The model also incorporates the previous sequential data of load-deformation curve into the decoder. The model shows a satisfactory accuracy and generalization ability for the load-deformation curve prediction, with a mean absolute error of 5.72% for the test data. The model could also be used for parametric analysis and design optimization of piles under different soil and pile conditions, pile cross section, pile length and type of pile.
There has been a significant research interest in employing large language models to empower intelligent robots with complex reasoning. Existing work focuses on harnessing their abilities to reason about the histories of their actions and observations. In this paper, we explore a new dimension in which large language models may benefit robotics planning. In particular, we propose Statler, a framework in which large language models are prompted to maintain an estimate of the world state, which are often unobservable, and track its transition as new actions are taken. Our framework then conditions each action on the estimate of the current world state. Despite being conceptually simple, our Statler framework significantly outperforms strong competing methods (e.g., Code-as-Policies) on several robot planning tasks. Additionally, it has the potential advantage of scaling up to more challenging long-horizon planning tasks. We release our code at //github.com/ripl/statler
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.