Harmful algal blooms (HABs) are episodes of high concentrations of algae that are potentially toxic for human consumption. Mollusc farming can be affected by HABs because, as filter feeders, they can accumulate high concentrations of marine biotoxins in their tissues. To avoid the risk to human consumption, harvesting is prohibited when toxicity is detected. At present, the closure of production areas is based on expert knowledge and the existence of a predictive model would help when conditions are complex and sampling is not possible. Although the concentration of toxin in meat is the method most commonly used by experts in the control of shellfish production areas, it is rarely used as a target by automatic prediction models. This is largely due to the irregularity of the data due to the established sampling programs. As an alternative, the activity status of production areas has been proposed as a target variable based on whether mollusc meat has a toxicity level below or above the legal limit. This new option is the most similar to the actual functioning of the control of shellfish production areas. For this purpose, we have made a comparison between hybrid machine learning models like Neural-Network-Adding Bootstrap (BAGNET) and Discriminative Nearest Neighbor Classification (SVM-KNN) when estimating the state of production areas. The study has been carried out in several estuaries with different levels of complexity in the episodes of algal blooms to demonstrate the generalization capacity of the models in bloom detection. As a result, we could observe that, with an average recall value of 93.41% and without dropping below 90% in any of the estuaries, BAGNET outperforms the other models both in terms of results and robustness.
Gary Lorden provided a number of fundamental and novel insights to sequential hypothesis testing and changepoint detection. In this article we provide an overview of Lorden's contributions in the context of existing results in those areas, and some extensions made possible by Lorden's work, mentioning also areas of application including threat detection in physical-computer systems, near-Earth space informatics, epidemiology, clinical trials, and finance.
We are concerned with high-dimensional coupled FBSDE systems approximated by the deep BSDE method of Han et al. (2018). It was shown by Han and Long (2020) that the errors induced by the deep BSDE method admit a posteriori estimate depending on the loss function, whenever the backward equation only couples into the forward diffusion through the Y process. We generalize this result to fully-coupled drift coefficients, and give sufficient conditions for convergence under standard assumptions. The resulting conditions are directly verifiable for any equation. Consequently, unlike in earlier theory, our convergence analysis enables the treatment of FBSDEs stemming from stochastic optimal control problems. In particular, we provide a theoretical justification for the non-convergence of the deep BSDE method observed in recent literature, and present direct guidelines for when convergence can be guaranteed in practice. Our theoretical findings are supported by several numerical experiments in high-dimensional settings.
Unisolvence of unsymmetric Kansa collocation is still a substantially open problem. We prove that Kansa matrices with MultiQuadrics and Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation are almost surely nonsingular, when the collocation points are chosen by any continuous random distribution in the domain interior and arbitrarily on its boundary.
Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs). Many MOEAs have been proposed in the past decades, of which the search operators need a carefully handcrafted design with domain knowledge. Recently, some attempts have been made to replace the manually designed operators in MOEAs with learning-based operators (e.g., neural network models). However, much effort is still required for designing and training such models, and the learned operators might not generalize well on new problems. To tackle the above challenges, this work investigates a novel approach that leverages the powerful large language model (LLM) to design MOEA operators. With proper prompt engineering, we successfully let a general LLM serve as a black-box search operator for decomposition-based MOEA (MOEA/D) in a zero-shot manner. In addition, by learning from the LLM behavior, we further design an explicit white-box operator with randomness and propose a new version of decomposition-based MOEA, termed MOEA/D-LO. Experimental studies on different test benchmarks show that our proposed method can achieve competitive performance with widely used MOEAs. It is also promising to see the operator only learned from a few instances can have robust generalization performance on unseen problems with quite different patterns and settings. The results reveal the potential benefits of using pre-trained LLMs in the design of MOEAs.To foster reproducibility and accessibility, the source code is //github.com/FeiLiu36/LLM4MOEA.
The current study proposes an innovative methodology for the profiling of psychological traits of Operations Management (OM) and Supply Chain Management (SCM) professionals. We use innovative methods and tools of text mining and social network analysis to map the demand for relevant skills from a set of job descriptions, with a focus on psychological characteristics. The proposed approach aims to evaluate the market demand for specific traits by combining relevant psychological constructs, text mining techniques, and an innovative measure, namely, the Semantic Brand Score. We apply the proposed methodology to a dataset of job descriptions for OM and SCM professionals, with the objective of providing a mapping of their relevant required skills, including psychological characteristics. In addition, the analysis is then detailed by considering the region of the organization that issues the job description, its organizational size, and the seniority level of the open position in order to understand their nuances. Finally, topic modeling is used to examine key components and their relative significance in job descriptions. By employing a novel methodology and considering contextual factors, we provide an innovative understanding of the attitudinal traits that differentiate professionals. This research contributes to talent management, recruitment practices, and professional development initiatives, since it provides new figures and perspectives to improve the effectiveness and success of Operations Management and Supply Chain Management professionals.
We propose to improve the convergence properties of the single-reference coupled cluster (CC) method through an augmented Lagrangian formalism. The conventional CC method changes a linear high-dimensional eigenvalue problem with exponential size into a problem of determining the roots of a nonlinear system of equations that has a manageable size. However, current numerical procedures for solving this system of equations to get the lowest eigenvalue suffer from two practical issues: First, solving the CC equations may not converge, and second, when converging, they may converge to other -- potentially unphysical -- states, which are stationary points of the CC energy expression. We show that both issues can be dealt with when a suitably defined energy is minimized in addition to solving the original CC equations. We further propose an augmented Lagrangian method for coupled cluster (alm-CC) to solve the resulting constrained optimization problem. We numerically investigate the proposed augmented Lagrangian formulation showing that the convergence towards the ground state is significantly more stable and that the optimization procedure is less susceptible to local minima. Furthermore, the computational cost of alm-CC is comparable to the conventional CC method.
For robots to interact socially, they must interpret human intentions and anticipate their potential outcomes accurately. This is particularly important for social robots designed for human care, which may face potentially dangerous situations for people, such as unseen obstacles in their way, that should be avoided. This paper explores the Artificial Theory of Mind (ATM) approach to inferring and interpreting human intentions. We propose an algorithm that detects risky situations for humans, selecting a robot action that removes the danger in real time. We use the simulation-based approach to ATM and adopt the 'like-me' policy to assign intentions and actions to people. Using this strategy, the robot can detect and act with a high rate of success under time-constrained situations. The algorithm has been implemented as part of an existing robotics cognitive architecture and tested in simulation scenarios. Three experiments have been conducted to test the implementation's robustness, precision and real-time response, including a simulated scenario, a human-in-the-loop hybrid configuration and a real-world scenario.
We introduce a 2-dimensional stochastic dominance (2DSD) index to characterize both strict and almost stochastic dominance. Based on this index, we derive an estimator for the minimum violation ratio (MVR), also known as the critical parameter, of the almost stochastic ordering condition between two variables. We determine the asymptotic properties of the empirical 2DSD index and MVR for the most frequently used stochastic orders. We also provide conditions under which the bootstrap estimators of these quantities are strongly consistent. As an application, we develop consistent bootstrap testing procedures for almost stochastic dominance. The performance of the tests is checked via simulations and the analysis of real data.
The Financial system has witnessed rapid technological changes. The rise of Bitcoin and other crypto assets based on Distributed Ledger Technology mark a fundamental change in the way people transact and transmit value over a decentralized network, spread across geographies. This has created regulatory and tax policy blind spots, as governments and tax administrations take time to understand and provide policy responses to this innovative, revolutionary, and fast-paced technology. Due to the breakneck speed of innovation in blockchain technology and advent of Decentralized Finance, Decentralized Autonomous Organizations and the Metaverse, it is unlikely that the policy interventions and guidance by regulatory authorities or tax administrations would be ahead or in sync with the pace of innovation. This paper tries to explain the principles on which crypto assets function, their underlying technology and relates them to the tax issues and taxable events which arise within this ecosystem. It also provides instances of tax and regulatory policy responses already in effect in various jurisdictions, including the recent changes in reporting standards by the FATF and the OECD. This paper tries to explain the rationale behind existing laws and policies and the challenges in their implementation. It also attempts to present a ballpark estimate of tax potential of this asset class and suggests creation of global public digital infrastructure that can address issues related to pseudonymity and extra-territoriality. The paper analyses both direct and indirect taxation issues related to crypto assets and discusses more recent aspects like proof-of-stake and maximal extractable value in greater detail.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.