亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We quantify the elementary Borel-Cantelli Lemma by higher moments of the overlap count statistic in terms of the weighted summability of the probabilities. Applications include mean deviation frequencies in the Strong Law and the Law of the Iterated Logarithm.

相關內容

In this paper we study estimating Generalized Linear Models (GLMs) in the case where the agents (individuals) are strategic or self-interested and they concern about their privacy when reporting data. Compared with the classical setting, here we aim to design mechanisms that can both incentivize most agents to truthfully report their data and preserve the privacy of individuals' reports, while their outputs should also close to the underlying parameter. In the first part of the paper, we consider the case where the covariates are sub-Gaussian and the responses are heavy-tailed where they only have the finite fourth moments. First, motivated by the stationary condition of the maximizer of the likelihood function, we derive a novel private and closed form estimator. Based on the estimator, we propose a mechanism which has the following properties via some appropriate design of the computation and payment scheme for several canonical models such as linear regression, logistic regression and Poisson regression: (1) the mechanism is $o(1)$-jointly differentially private (with probability at least $1-o(1)$); (2) it is an $o(\frac{1}{n})$-approximate Bayes Nash equilibrium for a $(1-o(1))$-fraction of agents to truthfully report their data, where $n$ is the number of agents; (3) the output could achieve an error of $o(1)$ to the underlying parameter; (4) it is individually rational for a $(1-o(1))$ fraction of agents in the mechanism ; (5) the payment budget required from the analyst to run the mechanism is $o(1)$. In the second part, we consider the linear regression model under more general setting where both covariates and responses are heavy-tailed and only have finite fourth moments. By using an $\ell_4$-norm shrinkage operator, we propose a private estimator and payment scheme which have similar properties as in the sub-Gaussian case.

We study online learning problems in which a decision maker has to take a sequence of decisions subject to $m$ long-term constraints. The goal of the decision maker is to maximize their total reward, while at the same time achieving small cumulative constraints violation across the $T$ rounds. We present the first best-of-both-world type algorithm for this general class of problems, with no-regret guarantees both in the case in which rewards and constraints are selected according to an unknown stochastic model, and in the case in which they are selected at each round by an adversary. Our algorithm is the first to provide guarantees in the adversarial setting with respect to the optimal fixed strategy that satisfies the long-term constraints. In particular, it guarantees a $\rho/(1+\rho)$ fraction of the optimal reward and sublinear regret, where $\rho$ is a feasibility parameter related to the existence of strictly feasible solutions. Our framework employs traditional regret minimizers as black-box components. Therefore, by instantiating it with an appropriate choice of regret minimizers it can handle the full-feedback as well as the bandit-feedback setting. Moreover, it allows the decision maker to seamlessly handle scenarios with non-convex rewards and constraints. We show how our framework can be applied in the context of budget-management mechanisms for repeated auctions in order to guarantee long-term constraints that are not packing (e.g., ROI constraints).

The parameters of the log-logistic distribution are generally estimated based on classical methods such as maximum likelihood estimation, whereas these methods usually result in severe biased estimates when the data contain outliers. In this paper, we consider several alternative estimators, which not only have closed-form expressions, but also are quite robust to a certain level of data contamination. We investigate the robustness property of each estimator in terms of the breakdown point. The finite sample performance and effectiveness of these estimators are evaluated through Monte Carlo simulations and a real-data application. Numerical results demonstrate that the proposed estimators perform favorably in a manner that they are comparable with the maximum likelihood estimator for the data without contamination and that they provide superior performance in the presence of data contamination.

In this paper, classic controllability and structural controllability under two protocols are investigated. For classic controllability, the multiplicity of eigenvalue zero of general Laplacian matrix $L^*$ is shown to be determined by the sum of the numbers of zero circles, identical nodes and opposite pairs, while it is always simple for the Laplacian $L$ with diagonal entries in absolute form. For a fixed structurally balanced topology, the controllable subspace is proved to be invariant even if the antagonistic weights are selected differently under the corresponding protocol with $L$. For a graph expanded from a star graph rooted from a single leader, the dimension of controllable subspace is two under the protocol associated with $L^*$. In addition, the system is structurally controllable under both protocols if and only if the topology without unaccessible nodes is connected. As a reinforcing case of structural controllability, strong structural controllability requires the system to be controllable for any choice of weights. The connection between father nodes and child nodes affects strong structural controllability because it determines the linear relationship of the control information from father nodes. This discovery is a major factor in establishing the sufficient conditions on strong structural controllability for multi-agent systems under both protocols, rather than for complex networks, about latter results are already abundant.

We investigate the potential of adaptive blind equalizers based on variational inference for carrier recovery in optical communications. These equalizers are based on a low-complexity approximation of maximum likelihood channel estimation. We generalize the concept of variational autoencoder (VAE) equalizers to higher order modulation formats encompassing probabilistic constellation shaping (PCS), ubiquitous in optical communications, oversampling at the receiver, and dual-polarization transmission. Besides black-box equalizers based on convolutional neural networks, we propose a model-based equalizer based on a linear butterfly filter and train the filter coefficients using the variational inference paradigm. As a byproduct, the VAE also provides a reliable channel estimation. We analyze the VAE in terms of performance and flexibility over a classical additive white Gaussian noise (AWGN) channel with inter-symbol interference (ISI) and over a dispersive linear optical dual-polarization channel. We show that it can extend the application range of blind adaptive equalizers by outperforming the state-of-the-art constant-modulus algorithm (CMA) for PCS for both fixed but also time-varying channels. The evaluation is accompanied with a hyperparameter analysis.

A general framework with a series of different methods is proposed to improve the estimate of convex function (or functional) values when only noisy observations of the true input are available. Technically, our methods catch the bias introduced by the convexity and remove this bias from a baseline estimate. Theoretical analysis are conducted to show that the proposed methods can strictly reduce the expected estimate error under mild conditions. When applied, the methods require no specific knowledge about the problem except the convexity and the evaluation of the function. Therefore, they can serve as off-the-shelf tools to obtain good estimate for a wide range of problems, including optimization problems with random objective functions or constraints, and functionals of probability distributions such as the entropy and the Wasserstein distance. Numerical experiments on a wide variety of problems show that our methods can significantly improve the quality of the estimate compared with the baseline method.

Cyber-physical systems (CPSs) are usually complex and safety-critical; hence, it is difficult and important to guarantee that the system's requirements, i.e., specifications, are fulfilled. Simulation-based falsification of CPSs is a practical testing method that can be used to raise confidence in the correctness of the system by only requiring that the system under test can be simulated. As each simulation is typically computationally intensive, an important step is to reduce the number of simulations needed to falsify a specification. We study Bayesian optimization (BO), a sample-efficient method that learns a surrogate model that describes the relationship between the parametrization of possible input signals and the evaluation of the specification. In this paper, we improve the falsification using BO by; first adopting two prominent BO methods, one fits local surrogate models, and the other exploits the user's prior knowledge. Secondly, the formulation of acquisition functions for falsification is addressed in this paper. Benchmark evaluation shows significant improvements in using local surrogate models of BO for falsifying benchmark examples that were previously hard to falsify. Using prior knowledge in the falsification process is shown to be particularly important when the simulation budget is limited. For some of the benchmark problems, the choice of acquisition function clearly affects the number of simulations needed for successful falsification.

Prior studies on intelligent reflecting surface (IRS) have mostly considered wireless communication systems aided by a single passive IRS, which, however, has limited control over wireless propagation environment and suffers severe product-distance path-loss. To address these issues, we propose in this paper a new multi-active multi-passive (MAMP)-IRS aided wireless communication system, where a number of active and passive IRSs are deployed to assist the downlink communication in complex environment, by establishing a multi-hop reflection path across active and passive IRSs. An optimization problem is formulated to maximize the achievable rate of a typical user by designing the active-and-passive IRS routing path as well as the joint beamforming of the BS and selected active/passive IRSs. To draw useful insights into the optimal design, we first consider a special case of the single-active multi-passive (SAMP)-IRS aided system. For this case, we propose an efficient algorithm to obtain its optimal solution by first optimizing the joint beamforming given any SAMP-IRS routing path, and then optimizing the routing path by using a new path decomposition method and graph theory. Next, for the general MAMP-IRS aided system, we show that its challenging beam routing optimization problem can be efficiently solved by a new two-phase approach. Its key idea is to first optimize the inner passive-IRS beam routing between each two active IRSs for effective channel power gain maximization, followed by an outer active-IRS beam routing optimization for rate maximization. Last, numerical results are provided to demonstrate the effectiveness of the proposed MAMP-IRS beam routing scheme.

This paper presents a succinct review of attempts in the literature to use game theory to model decision making scenarios relevant to defence applications. Game theory has been proven as a very effective tool in modelling decision making processes of intelligent agents, entities, and players. It has been used to model scenarios from diverse fields such as economics, evolutionary biology, and computer science. In defence applications, there is often a need to model and predict actions of hostile actors, and players who try to evade or out-smart each other. Modelling how the actions of competitive players shape the decision making of each other is the forte of game theory. In past decades, there have been several studies which applied different branches of game theory to model a range of defence-related scenarios. This paper provides a structured review of such attempts, and classifies existing literature in terms of the kind of warfare modelled, the types of game used, and the players involved. The presented analysis provides a concise summary about the state-of-the-art with regards to the use of game theory in defence applications, and highlights the benefits and limitations of game theory in the considered scenarios.

Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.

北京阿比特科技有限公司