亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM), i.e., improving the performance on unseen classes while maintaining the performance on seen classes. Comparing with existing generalizable methods that neglect the seen classes degradation, the setting of this problem is more strict and fits more closely with practical applications. To solve this problem, we start from the optimization perspective, and leverage the relationship between loss landscape geometry and model generalization ability. By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness, while each of them is indispensable. However, we find the optimizing gradient of existing methods cannot maintain high relevance to both loss value and loss sharpness during optimization, which severely affects their trade-off performance. To this end, we propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp), to dynamically constrain the optimizing gradient, thus achieving above two-fold optimization objective simultaneously. Extensive experiments verify the effectiveness of GCSCoOp in the trade-off problem.

相關內容

This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.

The Causal Roadmap outlines a systematic approach to our research endeavors: define quantity of interest, evaluate needed assumptions, conduct statistical estimation, and carefully interpret of results. At the estimation step, it is essential that the estimation algorithm be chosen thoughtfully for its theoretical properties and expected performance. Simulations can help researchers gain a better understanding of an estimator's statistical performance under conditions unique to the real-data application. This in turn can inform the rigorous pre-specification of a Statistical Analysis Plan (SAP), not only stating the estimand (e.g., G-computation formula), the estimator (e.g., targeted minimum loss-based estimation [TMLE]), and adjustment variables, but also the implementation of the estimator -- including nuisance parameter estimation and approach for variance estimation. Doing so helps ensure valid inference (e.g., 95% confidence intervals with appropriate coverage). Failing to pre-specify estimation can lead to data dredging and inflated Type-I error rates.

During the development of large language models (LLMs), the scale and quality of the pre-training data play a crucial role in shaping LLMs' capabilities. To accelerate the research of LLMs, several large-scale datasets, such as C4 [1], Pile [2], RefinedWeb [3] and WanJuan [4], have been released to the public. However, most of the released corpus focus mainly on English, and there is still lack of complete tool-chain for extracting clean texts from web data. Furthermore, fine-grained information of the corpus, e.g. the quality of each text, is missing. To address these challenges, we propose in this paper a new complete tool-chain EvalWeb to extract Chinese clean texts from noisy web data. First, similar to previous work, manually crafted rules are employed to discard explicit noisy texts from the raw crawled web contents. Second, a well-designed evaluation model is leveraged to assess the remaining relatively clean data, and each text is assigned a specific quality score. Finally, we can easily utilize an appropriate threshold to select the high-quality pre-training data for Chinese. Using our proposed approach, we release the largest and latest large-scale high-quality Chinese web text ChineseWebText, which consists of 1.42 TB and each text is associated with a quality score, facilitating the LLM researchers to choose the data according to the desired quality thresholds. We also release a much cleaner subset of 600 GB Chinese data with the quality exceeding 90%.

Pre-trained language models can be surprisingly adept at tasks they were not explicitly trained on, but how they implement these capabilities is poorly understood. In this paper, we investigate the basic mathematical abilities often acquired by pre-trained language models. Concretely, we use mechanistic interpretability techniques to explain the (limited) mathematical abilities of GPT-2 small. As a case study, we examine its ability to take in sentences such as "The war lasted from the year 1732 to the year 17", and predict valid two-digit end years (years > 32). We first identify a circuit, a small subset of GPT-2 small's computational graph that computes this task's output. Then, we explain the role of each circuit component, showing that GPT-2 small's final multi-layer perceptrons boost the probability of end years greater than the start year. Finally, we find related tasks that activate our circuit. Our results suggest that GPT-2 small computes greater-than using a complex but general mechanism that activates across diverse contexts.

In this paper, we propose a generic algorithm to train machine learning-based subgrid parametrizations online, i.e., with $\textit{a posteriori}$ loss functions for non-differentiable numerical solvers. The proposed approach leverage neural emulators to train an approximation of the reduced state-space solver, which is then used to allows gradient propagation through temporal integration steps. The algorithm is able to recover most of the benefit of online strategies without having to compute the gradient of the original solver. It is demonstrated that training the neural emulator and parametrization components separately with respective loss quantities is necessary in order to minimize the propagation of some approximation bias.

This paper proposes two innovative vector transport operators, leveraging the Cayley transform, for the generalized Stiefel manifold embedded with a non-standard inner product. Specifically, it introduces the differentiated retraction and an approximation of the Cayley transform to the differentiated matrix exponential. These vector transports are demonstrated to satisfy the Ring-Wirth non-expansive condition under non-standard metrics while preserving isometry. Building upon the novel vector transport operators, we extend the modified Polak-Ribi$\acute{e}$re-Polyak (PRP) conjugate gradient method to the generalized Stiefel manifold. Under a non-monotone line search condition, we prove our algorithm globally converges to a stationary point. The efficiency of the proposed vector transport operators is empirically validated through numerical experiments involving generalized eigenvalue problems and canonical correlation analysis.

This paper focuses on the construction of accurate and predictive data-driven reduced models of large-scale numerical simulations with complex dynamics and sparse training data sets. In these settings, standard, single-domain approaches may be too inaccurate or may overfit and hence generalize poorly. Moreover, processing large-scale data sets typically requires significant memory and computing resources which can render single-domain approaches computationally prohibitive. To address these challenges, we introduce a domain decomposition formulation into the construction of a data-driven reduced model. In doing so, the basis functions used in the reduced model approximation become localized in space, which can increase the accuracy of the domain-decomposed approximation of the complex dynamics. The decomposition furthermore reduces the memory and computing requirements to process the underlying large-scale training data set. We demonstrate the effectiveness and scalability of our approach in a large-scale three-dimensional unsteady rotating detonation rocket engine simulation scenario with over $75$ million degrees of freedom and a sparse training data set. Our results show that compared to the single-domain approach, the domain-decomposed version reduces both the training and prediction errors for pressure by up to $13 \%$ and up to $5\%$ for other key quantities, such as temperature, and fuel and oxidizer mass fractions. Lastly, our approach decreases the memory requirements for processing by almost a factor of four, which in turn reduces the computing requirements as well.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司