Given $1\le \ell <k$ and $\delta>0$, let $\textbf{PM}(k,\ell,\delta)$ be the decision problem for the existence of perfect matchings in $n$-vertex $k$-uniform hypergraphs with minimum $\ell$-degree at least $\delta\binom{n-\ell}{k-\ell}$. For $k\ge 3$, the decision problem in general $k$-uniform hypergraphs, equivalently $\textbf{PM}(k,\ell,0)$, is one of Karp's 21 NP-complete problems. Moreover, a reduction of Szyma\'{n}ska showed that $PM(k, \ell, \delta)$ is NP-complete for $\delta < 1-(1-1/k)^{k-\ell}$. A breakthrough by Keevash, Knox and Mycroft [STOC '13] resolved this problem for $\ell=k-1$ by showing that $PM(k, k-1, \delta)$ is in P for $\delta > 1/k$. Based on their result for $\ell=k-1$, Keevash, Knox and Mycroft conjectured that $PM(k, \ell, \delta)$ is in P for every $\delta > 1-(1-1/k)^{k-\ell}$. In this paper it is shown that this decision problem for perfect matchings can be reduced to the study of the minimum $\ell$-degree condition forcing the existence of fractional perfect matchings. That is, we hopefully solve the "computational complexity" aspect of the problem by reducing it to a well-known extremal problem in hypergraph theory. In particular, together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for $\ell\ge 0.4k$.
The basic goal of survivable network design is to build cheap networks that guarantee the connectivity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain [Combinatorica'01] provides a 2-approximation for a wide class of these problems. However nothing better is known even for very basic special cases, raising the natural question whether any improved approximation factor is possible at all. In this paper we address one of the most basic problems in this family for which 2 is still the best-known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted graph (that w.l.o.g. is a forest) and a collection of extra edges (links), compute a minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several better-than-2 approximation algorithms are known for the special case where the input graph is a tree, a.k.a. the Tree Augmentation Problem (TAP). Recently this was achieved also for the weighted version of TAP, and for the k-edge-connectivity generalization of TAP. These results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP. In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingredients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving, however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of implicit credits which might turn out to be helpful in future related work.
We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.
The Schrijver graph $S(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of $\{1,2,\ldots,n\}$ that do not include two consecutive elements modulo $n$, where two such sets are adjacent if they are disjoint. A result of Schrijver asserts that the chromatic number of $S(n,k)$ is $n-2k+2$ (Nieuw Arch. Wiskd., 1978). In the computational Schrijver problem, we are given an access to a coloring of the vertices of $S(n,k)$ with $n-2k+1$ colors, and the goal is to find a monochromatic edge. The Schrijver problem is known to be complete in the complexity class $\mathsf{PPA}$. We prove that it can be solved by a randomized algorithm with running time $n^{O(1)} \cdot k^{O(k)}$, hence it is fixed-parameter tractable with respect to the parameter $k$.
Stable matchings have been studied extensively in social choice literature. The focus has been mostly on integral matchings, in which the nodes on the two sides are wholly matched. A fractional matching, which is a convex combination of integral matchings, is a natural extension of integral matchings. The topic of stability of fractional matchings has started receiving attention only very recently. Further, incentive compatibility in the context of fractional matchings has received very little attention. With this as the backdrop, our paper studies the important topic of incentive compatibility of mechanisms to find stable fractional matchings. We work with preferences expressed in the form of cardinal utilities. Our first result is an impossibility result that there are matching instances for which no mechanism that produces a stable fractional matching can be incentive compatible or even approximately incentive compatible. This provides the motivation to seek special classes of matching instances for which there exist incentive compatible mechanisms that produce stable fractional matchings. Our study leads to a class of matching instances that admit unique stable fractional matchings. We first show that a unique stable fractional matching for a matching instance exists if and only if the given matching instance satisfies the conditional mutual first preference (CMFP) property. To this end, we provide a polynomial-time algorithm that makes ingenious use of envy-graphs to find a non-integral stable matching whenever the preferences are strict and the given instance is not a CMFP matching instance. For this class of CMFP matching instances, we prove that every mechanism that produces the unique stable fractional matching is (a) incentive compatible and further (b) resistant to coalitional manipulations.
Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.
In this paper, we propose a depth-first search (DFS) algorithm for searching maximum matchings in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative alternating paths in the super-vertices shrunk from blossoms, the newly proposed algorithm does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the redundant data structures. A benefit of our technique is to avoid spending time on shrinking and expanding blossoms. This DFS algorithm can determine a maximum matching of a general graph with $m$ edges and $n$ vertices in $O(mn)$ time with space complexity $O(n)$.
For a connected graph $G=(V,E)$, a matching $M\subseteq E$ is a matching cut of $G$ if $G-M$ is disconnected. It is known that for an integer $d$, the corresponding decision problem Matching Cut is polynomial-time solvable for graphs of diameter at most $d$ if $d\leq 2$ and NP-complete if $d\geq 3$. We prove the same dichotomy for graphs of bounded radius. For a graph $H$, a graph is $H$-free if it does not contain $H$ as an induced subgraph. As a consequence of our result, we can solve Matching Cut in polynomial time for $P_6$-free graphs, extending a recent result of Feghali for $P_5$-free graphs. We then extend our result to hold even for $(sP_3+P_6)$-free graphs for every $s\geq 0$ and initiate a complexity classification of Matching Cut for $H$-free graphs.
Categorical probability has recently seen significant advances through the formalism of Markov categories, within which several classical theorems have been proven in entirely abstract categorical terms. Closely related to Markov categories are gs-monoidal categories, also known as CD categories. These omit a condition that implements the normalization of probability. Extending work of Corradini and Gadducci, we construct free gs-monoidal and free Markov categories generated by a collection of morphisms of arbitrary arity and coarity. For free gs-monoidal categories, this comes in the form of an explicit combinatorial description of their morphisms as structured cospans of labeled hypergraphs. These can be thought of as a formalization of gs-monoidal string diagrams ($=$term graphs) as a combinatorial data structure. We formulate the appropriate $2$-categorical universal property based on ideas of Walters and prove that our categories satisfy it. We expect our free categories to be relevant for computer implementations and we also argue that they can be used as statistical causal models generalizing Bayesian networks.
We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'