亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

相關內容

In a seminal paper, Kannan and Lov\'asz (1988) considered a quantity $\mu_{KL}(\Lambda,K)$ which denotes the best volume-based lower bound on the covering radius $\mu(\Lambda,K)$ of a convex body $K$ with respect to a lattice $\Lambda$. Kannan and Lov\'asz proved that $\mu(\Lambda,K) \leq n \cdot \mu_{KL}(\Lambda,K)$ and the Subspace Flatness Conjecture by Dadush (2012) claims a $O(\log(2n))$ factor suffices, which would match the lower bound from the work of Kannan and Lov\'asz. We settle this conjecture up to a constant in the exponent by proving that $\mu(\Lambda,K) \leq O(\log^{3}(2n)) \cdot \mu_{KL} (\Lambda,K)$. Our proof is based on the Reverse Minkowski Theorem due to Regev and Stephens-Davidowitz (2017). Following the work of Dadush (2012, 2019), we obtain a $(\log(2n))^{O(n)}$-time randomized algorithm to solve integer programs in $n$ variables. Another implication of our main result is a near-optimal flatness constant of $O(n \log^{3}(2n))$.

This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension d; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself, and propose a simple stopping rule applicable to any optimization method which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. We also give a new logic for $\forall\exists$ properties and prove its alignment completeness.

In this paper, we propose a novel fully unsupervised framework that learns action representations suitable for the action segmentation task from the single input video itself, without requiring any training data. Our method is a deep metric learning approach rooted in a shallow network with a triplet loss operating on similarity distributions and a novel triplet selection strategy that effectively models temporal and semantic priors to discover actions in the new representational space. Under these circumstances, we successfully recover temporal boundaries in the learned action representations with higher quality compared with existing unsupervised approaches. The proposed method is evaluated on two widely used benchmark datasets for the action segmentation task and it achieves competitive performance by applying a generic clustering algorithm on the learned representations.

We propose two new dependent type systems. The first, is a dependent graded/linear type system where a graded dependent type system is connected via modal operators to a linear type system in the style of Linear/Non-linear logic. We then generalize this system to support many graded systems connected by many modal operators through the introduction of modes from Adjoint Logic. Finally, we prove several meta-theoretic properties of these two systems including graded substitution.

We propose a rich foundational theory of typed data streams and stream transformers, motivated by two high-level goals: (1) the type of a stream should be able to express complex sequential patterns of events over time, and (2) it should describe the parallel structure of the stream to enable deterministic stream processing on parallel and distributed systems. To this end, we introduce stream types, with operators capturing sequential composition, parallel composition, and iteration, plus a core calculus of transformers over typed streams which naturally supports a number of common streaming idioms, including punctuation, windowing, and parallel partitioning, as first-class constructions. The calculus exploits a Curry-Howard-like correspondence with an ordered variant of the logic of Bunched Implication to program with streams compositionally and uses Brzozowski-style derivatives to enable an incremental, event-based operational semantics. To validate our design, we provide a reference interpreter and machine-checked proofs of the main results.

This paper presents a study on using Agile methodologies in the teaching process at the university/college level during the Covid-19 pandemic, online classes. We detail a list of techniques inspired from software engineering Agile methodologies that can be used in online teaching. We also show, by analyzing students grades, that these Agile inspired techniques probably help in the educational process.

This note sketches the extension of the basic characterisation theorems as the bisimulation-invariant fragment of first-order logic to modal logic with graded modalities and matching adaptation of bisimulation. We focus on showing expressive completeness of graded multi-modal logic for those first-order properties of pointed Kripke structures that are preserved under counting bisimulation equivalence among all or among just all finite pointed Kripke structures.

A power series being given as the solution of a linear differential equation with appropriate initial conditions, minimization consists in finding a non-trivial linear differential equation of minimal order having this power series as a solution. This problem exists in both homogeneous and inhomogeneous variants; it is distinct from, but related to, the classical problem of factorization of differential operators. Recently, minimization has found applications in Transcendental Number Theory, more specifically in the computation of non-zero algebraic points where Siegel's $E$-functions take algebraic values. We present algorithms and implementations for these questions, and discuss examples and experiments.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司