亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A power series being given as the solution of a linear differential equation with appropriate initial conditions, minimization consists in finding a non-trivial linear differential equation of minimal order having this power series as a solution. This problem exists in both homogeneous and inhomogeneous variants; it is distinct from, but related to, the classical problem of factorization of differential operators. Recently, minimization has found applications in Transcendental Number Theory, more specifically in the computation of non-zero algebraic points where Siegel's $E$-functions take algebraic values. We present algorithms and implementations for these questions, and discuss examples and experiments.

相關內容

This paper presents a novel approach to construct regularizing operators for severely ill-posed Fredholm integral equations of the first kind by introducing parametrized discretization. The optimal values of discretization and regularization parameters are computed simultaneously by solving a minimization problem formulated based on a regularization parameter search criterion. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data.

The Landau--Lifshitz--Baryakhtar equation describes the evolution of magnetic spin field in magnetic materials at elevated temperature below the Curie temperature, when long-range interactions and longitudinal dynamics are taken into account. We propose two linear fully-discrete $C^1$-conforming methods to solve the problem, namely a semi-implicit Euler method and a semi-implicit BDF method, and show that these schemes are unconditionally stable. Error analysis is performed which shows optimal convergence rates in each case. Numerical results corroborate our theoretical results.

Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.

We give a short survey of recent results on sparse-grid linear algorithms of approximate recovery and integration of functions possessing a unweighted or weighted Sobolev mixed smoothness based on their sampled values at a certain finite set. Some of them are extended to more general cases.

Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.

It is disproved the Tokareva's conjecture that any balanced boolean function of appropriate degree is a derivative of some bent function. This result is based on new upper bounds for the numbers of bent and plateaued functions.

The semi-empirical nature of best-estimate models closing the balance equations of thermal-hydraulic (TH) system codes is well-known as a significant source of uncertainty for accuracy of output predictions. This uncertainty, called model uncertainty, is usually represented by multiplicative (log-)Gaussian variables whose estimation requires solving an inverse problem based on a set of adequately chosen real experiments. One method from the TH field, called CIRCE, addresses it. We present in the paper a generalization of this method to several groups of experiments each having their own properties, including different ranges for input conditions and different geometries. An individual (log-)Gaussian distribution is therefore estimated for each group in order to investigate whether the model uncertainty is homogeneous between the groups, or should depend on the group. To this end, a multi-group CIRCE is proposed where a variance parameter is estimated for each group jointly to a mean parameter common to all the groups to preserve the uniqueness of the best-estimate model. The ECME algorithm for Maximum Likelihood Estimation is adapted to the latter context, then applied to relevant demonstration cases. Finally, it is tested on a practical case to assess the uncertainty of critical mass flow assuming two groups due to the difference of geometry between the experimental setups.

For a singular integral equation on an interval of the real line, we study the behavior of the error of a delta-delta discretization. We show that the convergence is non-uniform, between order $O(h^{2})$ in the interior of the interval and a boundary layer where the consistency error does not tend to zero.

The effect of higher order continuity in the solution field by using NURBS basis function in isogeometric analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It is based on the Hu-Washizu variational principle considering geometrical and material nonlinearities. Here we present a reduced degree of basis functions for the additional fields of the stress resultants and strains of the beam, which are allowed to be discontinuous across elements. This approach turns out to significantly improve the computational efficiency and the accuracy of the results. We consider a beam formulation with extensible directors, where cross-sectional strains are enriched to avoid Poisson locking by an enhanced assumed strain method. In numerical examples, we show the superior per degree-of-freedom accuracy of IGA over conventional finite element analysis, due to the higher order continuity in the displacement field. We further verify the efficient rotational coupling between beams, as well as the path-independence of the results.

In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.

北京阿比特科技有限公司