亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Comparing probability distributions is at the crux of many machine learning algorithms. Maximum Mean Discrepancies (MMD) and Wasserstein distances are two classes of distances between probability distributions that have attracted abundant attention in past years. This paper establishes some conditions under which the Wasserstein distance can be controlled by MMD norms. Our work is motivated by the compressive statistical learning (CSL) theory, a general framework for resource-efficient large scale learning in which the training data is summarized in a single vector (called sketch) that captures the information relevant to the considered learning task. Inspired by existing results in CSL, we introduce the H\"older Lower Restricted Isometric Property and show that this property comes with interesting guarantees for compressive statistical learning. Based on the relations between the MMD and the Wasserstein distances, we provide guarantees for compressive statistical learning by introducing and studying the concept of Wasserstein regularity of the learning task, that is when some task-specific metric between probability distributions can be bounded by a Wasserstein distance.

相關內容

Optimal Transport has sparked vivid interest in recent years, in particular thanks to the Wasserstein distance, which provides a geometrically sensible and intuitive way of comparing probability measures. For computational reasons, the Sliced Wasserstein (SW) distance was introduced as an alternative to the Wasserstein distance, and has seen uses for training generative Neural Networks (NNs). While convergence of Stochastic Gradient Descent (SGD) has been observed practically in such a setting, there is to our knowledge no theoretical guarantee for this observation. Leveraging recent works on convergence of SGD on non-smooth and non-convex functions by Bianchi et al. (2022), we aim to bridge that knowledge gap, and provide a realistic context under which fixed-step SGD trajectories for the SW loss on NN parameters converge. More precisely, we show that the trajectories approach the set of (sub)-gradient flow equations as the step decreases. Under stricter assumptions, we show a much stronger convergence result for noised and projected SGD schemes, namely that the long-run limits of the trajectories approach a set of generalised critical points of the loss function.

The expectation-maximization (EM) algorithm and its variants are widely used in statistics. In high-dimensional mixture linear regression, the model is assumed to be a finite mixture of linear regression and the number of predictors is much larger than the sample size. The standard EM algorithm, which attempts to find the maximum likelihood estimator, becomes infeasible for such model. We devise a group lasso penalized EM algorithm and study its statistical properties. Existing theoretical results of regularized EM algorithms often rely on dividing the sample into many independent batches and employing a fresh batch of sample in each iteration of the algorithm. Our algorithm and theoretical analysis do not require sample-splitting, and can be extended to multivariate response cases. The proposed methods also have encouraging performances in numerical studies.

The Sliced Wasserstein (SW) distance has become a popular alternative to the Wasserstein distance for comparing probability measures. Widespread applications include image processing, domain adaptation and generative modelling, where it is common to optimise some parameters in order to minimise SW, which serves as a loss function between discrete probability measures (since measures admitting densities are numerically unattainable). All these optimisation problems bear the same sub-problem, which is minimising the Sliced Wasserstein energy. In this paper we study the properties of $\mathcal{E}: Y \longmapsto \mathrm{SW}_2^2(\gamma_Y, \gamma_Z)$, i.e. the SW distance between two uniform discrete measures with the same amount of points as a function of the support $Y \in \mathbb{R}^{n \times d}$ of one of the measures. We investigate the regularity and optimisation properties of this energy, as well as its Monte-Carlo approximation $\mathcal{E}_p$ (estimating the expectation in SW using only $p$ samples) and show convergence results on the critical points of $\mathcal{E}_p$ to those of $\mathcal{E}$, as well as an almost-sure uniform convergence. Finally, we show that in a certain sense, Stochastic Gradient Descent methods minimising $\mathcal{E}$ and $\mathcal{E}_p$ converge towards (Clarke) critical points of these energies.

Learning-based methods for inverse problems, adapting to the data's inherent structure, have become ubiquitous in the last decade. Besides empirical investigations of their often remarkable performance, an increasing number of works addresses the issue of theoretical guarantees. Recently, [3] exploited invertible residual networks (iResNets) to learn provably convergent regularizations given reasonable assumptions. They enforced these guarantees by approximating the linear forward operator with an iResNet. Supervised training on relevant samples introduces data dependency into the approach. An open question in this context is to which extent the data's inherent structure influences the training outcome, i.e., the learned reconstruction scheme. Here we address this delicate interplay of training design and data dependency from a Bayesian perspective and shed light on opportunities and limitations. We resolve these limitations by analyzing reconstruction-based training of the inverses of iResNets, where we show that this optimization strategy introduces a level of data-dependency that cannot be achieved by approximation training. We further provide and discuss a series of numerical experiments underpinning and extending the theoretical findings.

We study Bayesian histograms for distribution estimation on $[0,1]^d$ under the Wasserstein $W_v, 1 \leq v < \infty$ distance in the i.i.d sampling regime. We newly show that when $d < 2v$, histograms possess a special \textit{memory efficiency} property, whereby in reference to the sample size $n$, order $n^{d/2v}$ bins are needed to obtain minimax rate optimality. This result holds for the posterior mean histogram and with respect to posterior contraction: under the class of Borel probability measures and some classes of smooth densities. The attained memory footprint overcomes existing minimax optimal procedures by a polynomial factor in $n$; for example an $n^{1 - d/2v}$ factor reduction in the footprint when compared to the empirical measure, a minimax estimator in the Borel probability measure class. Additionally constructing both the posterior mean histogram and the posterior itself can be done super--linearly in $n$. Due to the popularity of the $W_1,W_2$ metrics and the coverage provided by the $d < 2v$ case, our results are of most practical interest in the $(d=1,v =1,2), (d=2,v=2), (d=3,v=2)$ settings and we provide simulations demonstrating the theory in several of these instances.

The field of Explainable Artificial Intelligence (XAI) aims to improve the interpretability of black-box machine learning models. Building a heatmap based on the importance value of input features is a popular method for explaining the underlying functions of such models in producing their predictions. Heatmaps are almost understandable to humans, yet they are not without flaws. Non-expert users, for example, may not fully understand the logic of heatmaps (the logic in which relevant pixels to the model's prediction are highlighted with different intensities or colors). Additionally, objects and regions of the input image that are relevant to the model prediction are frequently not entirely differentiated by heatmaps. In this paper, we propose a framework called TbExplain that employs XAI techniques and a pre-trained object detector to present text-based explanations of scene classification models. Moreover, TbExplain incorporates a novel method to correct predictions and textually explain them based on the statistics of objects in the input image when the initial prediction is unreliable. To assess the trustworthiness and validity of the text-based explanations, we conducted a qualitative experiment, and the findings indicated that these explanations are sufficiently reliable. Furthermore, our quantitative and qualitative experiments on TbExplain with scene classification datasets reveal an improvement in classification accuracy over ResNet variants.

This paper develops an approximation to the (effective) $p$-resistance and applies it to multi-class clustering. Spectral methods based on the graph Laplacian and its generalization to the graph $p$-Laplacian have been a backbone of non-euclidean clustering techniques. The advantage of the $p$-Laplacian is that the parameter $p$ induces a controllable bias on cluster structure. The drawback of $p$-Laplacian eigenvector based methods is that the third and higher eigenvectors are difficult to compute. Thus, instead, we are motivated to use the $p$-resistance induced by the $p$-Laplacian for clustering. For $p$-resistance, small $p$ biases towards clusters with high internal connectivity while large $p$ biases towards clusters of small "extent," that is a preference for smaller shortest-path distances between vertices in the cluster. However, the $p$-resistance is expensive to compute. We overcome this by developing an approximation to the $p$-resistance. We prove upper and lower bounds on this approximation and observe that it is exact when the graph is a tree. We also provide theoretical justification for the use of $p$-resistance for clustering. Finally, we provide experiments comparing our approximated $p$-resistance clustering to other $p$-Laplacian based methods.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司