This paper develops an approximation to the (effective) $p$-resistance and applies it to multi-class clustering. Spectral methods based on the graph Laplacian and its generalization to the graph $p$-Laplacian have been a backbone of non-euclidean clustering techniques. The advantage of the $p$-Laplacian is that the parameter $p$ induces a controllable bias on cluster structure. The drawback of $p$-Laplacian eigenvector based methods is that the third and higher eigenvectors are difficult to compute. Thus, instead, we are motivated to use the $p$-resistance induced by the $p$-Laplacian for clustering. For $p$-resistance, small $p$ biases towards clusters with high internal connectivity while large $p$ biases towards clusters of small "extent," that is a preference for smaller shortest-path distances between vertices in the cluster. However, the $p$-resistance is expensive to compute. We overcome this by developing an approximation to the $p$-resistance. We prove upper and lower bounds on this approximation and observe that it is exact when the graph is a tree. We also provide theoretical justification for the use of $p$-resistance for clustering. Finally, we provide experiments comparing our approximated $p$-resistance clustering to other $p$-Laplacian based methods.
This article presents MAPS$^2$ : a distributed algorithm that allows multi-robot systems to deliver coupled tasks expressed as Signal Temporal Logic (STL) constraints. Classical control theoretical tools addressing STL constraints either adopt a limited fragment of the STL formula or require approximations of min/max operators, whereas works maximising robustness through optimisation-based methods often suffer from local minima, relaxing any completeness arguments due to the NP-hard nature of the problem. Endowed with probabilistic guarantees, MAPS$^2$ provides an anytime algorithm that iteratively improves the robots' trajectories. The algorithm selectively imposes spatial constraints by taking advantage of the temporal properties of the STL. The algorithm is distributed, in the sense that each robot calculates its trajectory by communicating only with its immediate neighbours as defined via a communication graph. We illustrate the efficiency of MAPS$^2$ by conducting extensive simulation and experimental studies, verifying the generation of STL satisfying trajectories.
We study the approximability of computing the partition functions of two-state spin systems. The problem is parameterized by a $2\times 2$ symmetric matrix. Previous results on this problem were restricted either to the case where the matrix has non-negative entries, or to the case where the diagonal entries are equal, i.e. Ising models. In this paper, we study the generalization to arbitrary $2\times 2$ interaction matrices with real entries. We show that in some regions of the parameter space, it's \#P-hard to even determine the sign of the partition function, while in other regions there are fully polynomial approximation schemes for the partition function. Our results reveal several new computational phase transitions.
A well-known approach in the design of efficient algorithms, called matrix sparsification, approximates a matrix $A$ with a sparse matrix $A'$. Achlioptas and McSherry [2007] initiated a long line of work on spectral-norm sparsification, which aims to guarantee that $\|A'-A\|\leq \epsilon \|A\|$ for error parameter $\epsilon>0$. Various forms of matrix approximation motivate considering this problem with a guarantee according to the Schatten $p$-norm for general $p$, which includes the spectral norm as the special case $p=\infty$. We investigate the relation between fixed but different $p\neq q$, that is, whether sparsification in the Schatten $p$-norm implies (existentially and/or algorithmically) sparsification in the Schatten $q\text{-norm}$ with similar sparsity. An affirmative answer could be tremendously useful, as it will identify which value of $p$ to focus on. Our main finding is a surprising contrast between this question and the analogous case of $\ell_p$-norm sparsification for vectors: For vectors, the answer is affirmative for $p<q$ and negative for $p>q$, but for matrices we answer negatively for almost all sufficiently distinct $p\neq q$. In addition, our explicit constructions may be of independent interest.
We study the SHORTEST PATH problem with positive disjunctive constraints from the perspective of parameterized complexity. For positive disjunctive constraints, there are certain pair of edges such that any feasible solution must contain at least one edge from every such pair. In this paper, we initiate the study of SHORTEST PATH problem subject to some positive disjunctive constraints the classical version is known to be NP-Complete. Formally, given an undirected graph G = (V, E) with a forcing graph H = (E, F) such that the vertex set of H is same as the edge set of G. The goal is to find a set S of at most k edges from G such that S forms a vertex cover in H and there is a path from s to t in the subgraph of G induced by the edge set S. In this paper, we consider two natural parameterizations for this problem. One natural parameter is the solution size, i.e. k for which we provide a kernel with O(k^5) vertices when both G and H are general graphs. Additionally, when either G or H (but not both) belongs to some special graph classes, we provied kernelization results with O(k^3) vertices . The other natural parameter we consider is structural properties of H, i.e. the size of a vertex deletion set of H to some special graph classes. We provide some fixed-parameter tractability results for those structural parameterizations.
Variational inference, such as the mean-field (MF) approximation, requires certain conjugacy structures for efficient computation. These can impose unnecessary restrictions on the viable prior distribution family and further constraints on the variational approximation family. In this work, we introduce a general computational framework to implement MF variational inference for Bayesian models, with or without latent variables, using the Wasserstein gradient flow (WGF), a modern mathematical technique for realizing a gradient flow over the space of probability measures. Theoretically, we analyze the algorithmic convergence of the proposed approaches, providing an explicit expression for the contraction factor. We also strengthen existing results on MF variational posterior concentration from a polynomial to an exponential contraction, by utilizing the fixed point equation of the time-discretized WGF. Computationally, we propose a new constraint-free function approximation method using neural networks to numerically realize our algorithm. This method is shown to be more precise and efficient than traditional particle approximation methods based on Langevin dynamics.
We introduce the $ARMOR_D$ methods as novel approaches to enhancing the adversarial robustness of deep learning models. These methods are based on a new class of optimal-transport-regularized divergences, constructed via an infimal convolution between an information divergence and an optimal-transport (OT) cost. We use these as tools to enhance adversarial robustness by maximizing the expected loss over a neighborhood of distributions, a technique known as distributionally robust optimization. Viewed as a tool for constructing adversarial samples, our method allows samples to be both transported, according to the OT cost, and re-weighted, according to the information divergence. We demonstrate the effectiveness of our method on malware detection and image recognition applications and find that, to our knowledge, it outperforms existing methods at enhancing the robustness against adversarial attacks. $ARMOR_D$ yields the robustified accuracy of $98.29\%$ against $FGSM$ and $98.18\%$ against $PGD^{40}$ on the MNIST dataset, reducing the error rate by more than $19.7\%$ and $37.2\%$ respectively compared to prior methods. Similarly, in malware detection, a discrete (binary) data domain, $ARMOR_D$ improves the robustified accuracy under $rFGSM^{50}$ attack compared to the previous best-performing adversarial training methods by $37.0\%$ while lowering false negative and false positive rates by $51.1\%$ and $57.53\%$, respectively.
Spiking Neural Networks (SNNs) have gained attention for their energy-efficient machine learning capabilities, utilizing bio-inspired activation functions and sparse binary spike-data representations. While recent SNN algorithmic advances achieve high accuracy on large-scale computer vision tasks, their energy-efficiency claims rely on certain impractical estimation metrics. This work studies two hardware benchmarking platforms for large-scale SNN inference, namely SATA and SpikeSim. SATA is a sparsity-aware systolic-array accelerator, while SpikeSim evaluates SNNs implemented on In-Memory Computing (IMC) based analog crossbars. Using these tools, we find that the actual energy-efficiency improvements of recent SNN algorithmic works differ significantly from their estimated values due to various hardware bottlenecks. We identify and address key roadblocks to efficient SNN deployment on hardware, including repeated computations & data movements over timesteps, neuronal module overhead, and vulnerability of SNNs towards crossbar non-idealities.
This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.