亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unified Sequence Labeling that articulates different sequence labeling problems such as Named Entity Recognition, Relation Extraction, Semantic Role Labeling, etc. in a generalized sequence-to-sequence format opens up the opportunity to make the maximum utilization of large language model knowledge toward structured prediction. Unfortunately, this requires formatting them into specialized augmented format unknown to the base pretrained language model (PLMs) necessitating finetuning to the target format. This significantly bounds its usefulness in data-limited settings where finetuning large models cannot properly generalize to the target format. To address this challenge and leverage PLM knowledge effectively, we propose FISH-DIP, a sample-aware dynamic sparse finetuning strategy that selectively focuses on a fraction of parameters, informed by feedback from highly regressing examples, during the fine-tuning process. By leveraging the dynamism of sparsity, our approach mitigates the impact of well-learned samples and prioritizes underperforming instances for improvement in generalization. Across five tasks of sequence labeling, we demonstrate that FISH-DIP can smoothly optimize the model in low resource settings offering upto 40% performance improvements over full fine-tuning depending on target evaluation settings. Also, compared to in-context learning and other parameter-efficient fine-tuning approaches, FISH-DIP performs comparably or better, notably in extreme low-resource settings.

相關內容

Recently, 3D Gaussian, as an explicit 3D representation method, has demonstrated strong competitiveness over NeRF (Neural Radiance Fields) in terms of expressing complex scenes and training duration. These advantages signal a wide range of applications for 3D Gaussians in 3D understanding and editing. Meanwhile, the segmentation of 3D Gaussians is still in its infancy. The existing segmentation methods are not only cumbersome but also incapable of segmenting multiple objects simultaneously in a short amount of time. In response, this paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision. This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information, while nearest neighbor clustering and statistical filtering refine the segmentation results. Experiments show that our concise method can achieve comparable performances on mIOU and mAcc for multi-object segmentation as previous single-object segmentation methods.

Overfitting is a significant challenge in the application of Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) analysis. Visualizing attention heatmaps reveals that current MIL methods focus on a subset of discriminative instances, hindering effective model generalization. To tackle this, we propose Attention-Challenging MIL (ACMIL), aimed at forcing the attention mechanism to focus on more challenging instances. ACMIL incorporates two techniques, Multiple Branch Attention (MBA) to capture more discriminative instances and Stochastic Top-K Instance Masking (STKIM) to suppress top-k salient instances. Evaluation on three WSI datasets with two pre-trained backbones outperforms state-of-the-art methods. Additionally, through heatmap visualization and UMAP visualization, this paper comprehensively illustrates ACMIL's effectiveness in overcoming the overfitting challenge. The source code is available at \url{//github.com/dazhangyu123/ACMIL}.

Aspect Sentiment Triplet Extraction (ASTE) is an emerging task to extract a given sentence's triplets, which consist of aspects, opinions, and sentiments. Recent studies tend to address this task with a table-filling paradigm, wherein word relations are encoded in a two-dimensional table, and the process involves clarifying all the individual cells to extract triples. However, these studies ignore the deep interaction between neighbor cells, which we find quite helpful for accurate extraction. To this end, we propose a novel model for the ASTE task, called Prompt-based Tri-Channel Graph Convolution Neural Network (PT-GCN), which converts the relation table into a graph to explore more comprehensive relational information. Specifically, we treat the original table cells as nodes and utilize a prompt attention score computation module to determine the edges' weights. This enables us to construct a target-aware grid-like graph to enhance the overall extraction process. After that, a triple-channel convolution module is conducted to extract precise sentiment knowledge. Extensive experiments on the benchmark datasets show that our model achieves state-of-the-art performance. The code is available at //github.com/KunPunCN/PT-GCN.

Large Language Models and Multi-Modal LLMs have become pervasive, and so does the importance of their security; yet, modern LLMs are known to be vulnerable to jailbreaking attacks. These attacks can allow malicious users to exploit the models, making the case for effective jailbreak detection mechanisms an essential aspect of maintaining the integrity and trustworthiness of LLM-based applications. However, existing detection works on jailbreak attacks have limitations. Existing post-query-based strategies require target domain knowledge, and pre-query-based methods mainly focus on text-level attacks and fail to meet the increasingly complex multi-modal security requirements placed upon contemporary LLMs. This gap underscores the need for a more comprehensive approach to safeguarding these influential systems. In this work, we propose JailGuard, the first mutation-based jailbreaking detection framework which supports both image and text modalities. Our key observation is that attack queries inherently possess less robustness compared to benign queries. Specifically, to confuse the model, attack queries are usually crafted with well-designed templates or complicate perturbations, leading to a fact that a slight disturbance in input may result in a drastic change in the response. This lack of robustness can be utilized in attack detection. Based on this intuition, we designed and implemented a detection framework comprising 19 different mutators and a divergence-based detection formula. To fully understand the effectiveness of our framework, we built the first multi-modal LLM jailbreaking attack dataset, which has 304 items of data, covering ten types of known jailbreaking attacks on image and text modalities. The evaluation suggests that JailGuard achieves the best detection accuracy of 89.38%/85.42% on image and text inputs, outperforming state-of-the-art defense methods by 15.28%.

We discuss an interesting sequence defined recursively; namely, sequence A105774 from the On-Line Encyclopedia of Integer Sequences, and study some of its properties. Our main tools are Fibonacci representation, finite automata, and the Walnut theorem-prover. We also prove two new results about synchronized sequences.

Vision Transformers (ViTs) have achieved state-of-the-art results on various computer vision tasks, including 3D object detection. However, their end-to-end implementation also makes ViTs less explainable, which can be a challenge for deploying them in safety-critical applications, such as autonomous driving, where it is important for authorities, developers, and users to understand the model's reasoning behind its predictions. In this paper, we propose a novel method for generating saliency maps for a DetR-like ViT with multiple camera inputs used for 3D object detection. Our method is based on the raw attention and is more efficient than gradient-based methods. We evaluate the proposed method on the nuScenes dataset using extensive perturbation tests and show that it outperforms other explainability methods in terms of visual quality and quantitative metrics. We also demonstrate the importance of aggregating attention across different layers of the transformer. Our work contributes to the development of explainable AI for ViTs, which can help increase trust in AI applications by establishing more transparency regarding the inner workings of AI models.

Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司