亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, 3D Gaussian, as an explicit 3D representation method, has demonstrated strong competitiveness over NeRF (Neural Radiance Fields) in terms of expressing complex scenes and training duration. These advantages signal a wide range of applications for 3D Gaussians in 3D understanding and editing. Meanwhile, the segmentation of 3D Gaussians is still in its infancy. The existing segmentation methods are not only cumbersome but also incapable of segmenting multiple objects simultaneously in a short amount of time. In response, this paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision. This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information, while nearest neighbor clustering and statistical filtering refine the segmentation results. Experiments show that our concise method can achieve comparable performances on mIOU and mAcc for multi-object segmentation as previous single-object segmentation methods.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

In the realm of Graph Neural Networks (GNNs), two exciting research directions have recently emerged: Subgraph GNNs and Graph Transformers. In this paper, we propose an architecture that integrates both approaches, dubbed Subgraphormer, which combines the enhanced expressive power, message-passing mechanisms, and aggregation schemes from Subgraph GNNs with attention and positional encodings, arguably the most important components in Graph Transformers. Our method is based on an intriguing new connection we reveal between Subgraph GNNs and product graphs, suggesting that Subgraph GNNs can be formulated as Message Passing Neural Networks (MPNNs) operating on a product of the graph with itself. We use this formulation to design our architecture: first, we devise an attention mechanism based on the connectivity of the product graph. Following this, we propose a novel and efficient positional encoding scheme for Subgraph GNNs, which we derive as a positional encoding for the product graph. Our experimental results demonstrate significant performance improvements over both Subgraph GNNs and Graph Transformers on a wide range of datasets.

The Combinatorial Multi-Round Ascending Auction (CMRA) is a new auction format that has already been used in several recent European spectrum auctions. We characterize ex-post equilibria that feature auction-specific forms of truthful bidding, demand expansion, and demand reduction for settings where bidders have either decreasing or non-decreasing marginal values. In particular, we show that the truthtelling equilibrium is fragile to small asymmetries in the bidders' caps. On the other hand, if bidders are sufficiently symmetric, the CMRA is vulnerable to risk-free collusion. We propose an alternative activity rule that prevents such collusive strategies but keeps the other equilibria intact. We discuss to what extent our theory is consistent with outcomes in Danish spectrum auctions and how our predictions can be tested using bidding data.

Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents. Codes are available at //github.com/uclaml/SPIN.

Since their inception, Vision Transformers (ViTs) have emerged as a compelling alternative to Convolutional Neural Networks (CNNs) across a wide spectrum of tasks. ViTs exhibit notable characteristics, including global attention, resilience against occlusions, and adaptability to distribution shifts. One underexplored aspect of ViTs is their potential for multi-attribute learning, referring to their ability to simultaneously grasp multiple attribute-related tasks. In this paper, we delve into the multi-attribute learning capability of ViTs, presenting a straightforward yet effective strategy for training various attributes through a single ViT network as distinct tasks. We assess the resilience of multi-attribute ViTs against adversarial attacks and compare their performance against ViTs designed for single attributes. Moreover, we further evaluate the robustness of multi-attribute ViTs against a recent transformer based attack called Patch-Fool. Our empirical findings on the CelebA dataset provide validation for our assertion.

Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier. The source code and the experimental data for this paper are available in \url{//github.com/microsoft/NeuralInvariantRanker}.

With the development of large language models, multiple AIs are now made available for code generation (such as ChatGPT and StarCoder) and are adopted widely. It is often desirable to know whether a piece of code is generated by AI, and furthermore, which AI is the author. For instance, if a certain version of AI is known to generate vulnerable code, it is particularly important to know the creator. Existing approaches are not satisfactory as watermarking codes are challenging compared with watermarking text data, as codes can be altered with relative ease via widely-used code refactoring methods. In this work, we propose ACW (AI Code Watermarking), a novel method for watermarking AI-generated codes. ACW is efficient as it requires no training or fine-tuning and works in a black-box manner. It is resilient as the watermark cannot be easily removed or tampered through common code refactoring methods. The key idea of ACW is to selectively apply a set of carefully-designed semantic-preserving, idempotent code transformations, whose presence (or absence) allows us to determine the existence of the watermark. Our experimental results show that ACW is effective (i.e., achieving high accuracy, true positive rates and false positive rates), resilient and efficient, significantly outperforming existing approaches.

Pareto Set Learning (PSL) is a promising approach for approximating the entire Pareto front in multi-objective optimization (MOO) problems. However, existing derivative-free PSL methods are often unstable and inefficient, especially for expensive black-box MOO problems where objective function evaluations are costly. In this work, we propose to address the instability and inefficiency of existing PSL methods with a novel controllable PSL method, called Co-PSL. Particularly, Co-PSL consists of two stages: (1) warm-starting Bayesian optimization to obtain quality Gaussian Processes priors and (2) controllable Pareto set learning to accurately acquire a parametric mapping from preferences to the corresponding Pareto solutions. The former is to help stabilize the PSL process and reduce the number of expensive function evaluations. The latter is to support real-time trade-off control between conflicting objectives. Performances across synthesis and real-world MOO problems showcase the effectiveness of our Co-PSL for expensive multi-objective optimization tasks.

This paper introduces a novel physical-layer method labelled as Multi-Modal Concurrent Transmission (MMCT) for efficient transmission of multiple data streams with different reliability-latency performance requirements. The MMCT arranges data from multiple streams within a same physical-layer transport block wherein stream-specific modulation and coding scheme (MCS) selection is combined with joint mapping of modulated codewords to Multiple-Input Multiple-Output spatial layers and frequency resources. Mapping to spatial-frequency resources with higher Signal-to-Noise Ratios (SNRs) provides the required performance boost for the more demanding streams. In tactile internet applications, wherein haptic feedback/actuation and audio-video streams flow in parallel, the method provides significant SNR and spectral efficiency enhancements compared to conventional 3GPP New Radio (NR) transmission methods.

We present a novel approach to enhance the capabilities of VQ-VAE models through the integration of a Residual Encoder and a Residual Pixel Attention layer, named Attentive Residual Encoder (AREN). The objective of our research is to improve the performance of VQ-VAE while maintaining practical parameter levels. The AREN encoder is designed to operate effectively at multiple levels, accommodating diverse architectural complexities. The key innovation is the integration of an inter-pixel auto-attention mechanism into the AREN encoder. This approach allows us to efficiently capture and utilize contextual information across latent vectors. Additionally, our models uses additional encoding levels to further enhance the model's representational power. Our attention layer employs a minimal parameter approach, ensuring that latent vectors are modified only when pertinent information from other pixels is available. Experimental results demonstrate that our proposed modifications lead to significant improvements in data representation and generation, making VQ-VAEs even more suitable for a wide range of applications as the presented.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司