亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blind and low-vision (BLV) people face many challenges when venturing into public environments, often wishing it were easier to get help from people nearby. Ironically, while many sighted individuals are willing to help, such interactions are infrequent. Asking for help is socially awkward for BLV people, and sighted people lack experience in helping BLV people. Through a mixed-ability research-through-design process, we explore four diverse approaches toward how assistive technology can serve as help supporters that collaborate with both BLV and sighted parties throughout the help process. These approaches span two phases: the connection phase (finding someone to help) and the collaboration phase (facilitating help after finding someone). Our findings from a 20-participant mixed-ability study reveal how help supporters can best facilitate connection, which types of information they should present during both phases, and more. We discuss design implications for future approaches to support face-to-face help.

相關內容

Processing 是一門開(kai)源編程語言和與之配套的(de)(de)集(ji)成開(kai)發環境(IDE)的(de)(de)名稱(cheng)。Processing 在電子藝術(shu)和視覺設計社(she)區被用來教授編程基礎,并運(yun)用于大(da)量的(de)(de)新媒體(ti)和互動藝術(shu)作品中。

In many real-world large-scale decision problems, self-interested agents have individual dynamics and optimize their own long-term payoffs. Important examples include the competitive access to shared resources (e.g., roads, energy, or bandwidth) but also non-engineering domains like epidemic propagation and control. These problems are natural to model as mean-field games. However, existing mathematical formulations of mean field games have had limited applicability in practice, since they require solving non-standard initial-terminal-value problems that are tractable only in limited special cases. In this letter, we propose a novel formulation, along with computational tools, for a practically relevant class of Dynamic Population Games (DPGs), which correspond to discrete-time, finite-state-and-action, stationary mean-field games. Our main contribution is a mathematical reduction of Stationary Nash Equilibria (SNE) in DPGs to standard Nash Equilibria (NE) in static population games. This reduction is leveraged to guarantee the existence of a SNE, develop an evolutionary dynamics-based SNE computation algorithm, and derive simple conditions that guarantee stability and uniqueness of the SNE. Additionally, DPGs enable us to tractably incorporate multiple agent types, which is of particular importance to assess fairness concerns in resource allocation problems. We demonstrate our results by computing the SNE in two complex application examples: fair resource allocation with heterogeneous agents and control of epidemic propagation. Open source software for SNE computation: //gitlab.ethz.ch/elokdae/dynamic-population-games

With the recent advancements in intelligent personal assistants (IPAs), their popularity is rapidly increasing when it comes to utilizing Automatic Speech Recognition within households. In this study, we used a Wizard-of-Oz methodology to evaluate and compare the usability of American Sign Language (ASL), Tap to Alexa, and smart home apps among 23 deaf participants within a limited-domain smart home environment. Results indicate a slight usability preference for ASL. Linguistic analysis of the participants' signing reveals a diverse range of expressions and vocabulary as they interacted with IPAs in the context of a restricted-domain application. On average, deaf participants exhibited a vocabulary of 47 +/- 17 signs with an additional 10 +/- 7 fingerspelled words, for a total of 246 different signs and 93 different fingerspelled words across all participants. We discuss the implications for the design of limited-vocabulary applications as a stepping-stone toward general-purpose ASL recognition in the future.

To achieve strong real world performance, neural networks must be trained on large, diverse datasets; however, obtaining and annotating such datasets is costly and time-consuming, particularly for 3D point clouds. In this paper, we describe Paved2Paradise, a simple, cost-effective approach for generating fully labeled, diverse, and realistic lidar datasets from scratch, all while requiring minimal human annotation. Our key insight is that, by deliberately collecting separate "background" and "object" datasets (i.e., "factoring the real world"), we can intelligently combine them to produce a combinatorially large and diverse training set. The Paved2Paradise pipeline thus consists of four steps: (1) collecting copious background data, (2) recording individuals from the desired object class(es) performing different behaviors in an isolated environment (like a parking lot), (3) bootstrapping labels for the object dataset, and (4) generating samples by placing objects at arbitrary locations in backgrounds. To demonstrate the utility of Paved2Paradise, we generated synthetic datasets for two tasks: (1) human detection in orchards (a task for which no public data exists) and (2) pedestrian detection in urban environments. Qualitatively, we find that a model trained exclusively on Paved2Paradise synthetic data is highly effective at detecting humans in orchards, including when individuals are heavily occluded by tree branches. Quantitatively, a model trained on Paved2Paradise data that sources backgrounds from KITTI performs comparably to a model trained on the actual dataset. These results suggest the Paved2Paradise synthetic data pipeline can help accelerate point cloud model development in sectors where acquiring lidar datasets has previously been cost-prohibitive.

Background: Recent advancements in Artificial Intelligence (AI) contributed significantly to suicide assessment, however, our theoretical understanding of this complex behavior is still limited. Objective: This study aimed to harness AI methodologies to uncover hidden risk factors that trigger or aggravate suicide behaviors. Method: The primary dataset included 228,052 Facebook postings by 1,006 users who completed the gold-standard Columbia Suicide Severity Rating Scale. This dataset was analyzed using a bottom-up research pipeline without a-priory hypotheses and its findings were validated using a top-down analysis of a new dataset. This secondary dataset included responses by 1,062 participants to the same suicide scale as well as to well-validated scales measuring depression and boredom. Results: An almost fully automated, AI-guided research pipeline resulted in four Facebook topics that predicted the risk of suicide, of which the strongest predictor was boredom. A comprehensive literature review using APA PsycInfo revealed that boredom is rarely perceived as a unique risk factor of suicide. A complementing top-down path analysis of the secondary dataset uncovered an indirect relationship between boredom and suicide, which was mediated by depression. An equivalent mediated relationship was observed in the primary Facebook dataset as well. However, here, a direct relationship between boredom and suicide risk was also observed. Conclusions: Integrating AI methods allowed the discovery of an under-researched risk factor of suicide. The study signals boredom as a maladaptive 'ingredient' that might trigger suicide behaviors, regardless of depression. Further studies are recommended to direct clinicians' attention to this burdening, and sometimes existential experience.

Advanced biological intelligence learns efficiently from an information-rich stream of stimulus information, even when feedback on behaviour quality is sparse or absent. Such learning exploits implicit assumptions about task domains. We refer to such learning as Domain-Adapted Learning (DAL). In contrast, AI learning algorithms rely on explicit externally provided measures of behaviour quality to acquire fit behaviour. This imposes an information bottleneck that precludes learning from diverse non-reward stimulus information, limiting learning efficiency. We consider the question of how biological evolution circumvents this bottleneck to produce DAL. We propose that species first evolve the ability to learn from reward signals, providing inefficient (bottlenecked) but broad adaptivity. From there, integration of non-reward information into the learning process can proceed via gradual accumulation of biases induced by such information on specific task domains. This scenario provides a biologically plausible pathway towards bottleneck-free, domain-adapted learning. Focusing on the second phase of this scenario, we set up a population of NNs with reward-driven learning modelled as Reinforcement Learning (A2C), and allow evolution to improve learning efficiency by integrating non-reward information into the learning process using a neuromodulatory update mechanism. On a navigation task in continuous 2D space, evolved DAL agents show a 300-fold increase in learning speed compared to pure RL agents. Evolution is found to eliminate reliance on reward information altogether, allowing DAL agents to learn from non-reward information exclusively, using local neuromodulation-based connection weight updates only.

Addressing health disparities among different demographic groups is a key challenge in public health. Despite many efforts, there is still a gap in understanding how these disparities unfold over time. Our paper focuses on this overlooked longitudinal aspect, which is crucial in both clinical and public health settings. In this paper, we introduce a longitudinal disparity decomposition method that decomposes disparities into three components: the explained disparity linked to differences in the exploratory variables' conditional distribution when the modifier distribution is identical between majority and minority groups, the explained disparity that emerges specifically from the unequal distribution of the modifier and its interaction with covariates, and the unexplained disparity. The proposed method offers a dynamic alternative to the traditional Peters-Belson decomposition approach, tackling both the potential reduction in disparity if the covariate distributions of minority groups matched those of the majority group and the evolving nature of disparity over time. We apply the proposed approach to a fetal growth study to gain insights into disparities between different race/ethnicity groups in fetal developmental progress throughout the course of pregnancy.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司