Suppose that there is an unknown underlying graph $G$ on a large vertex set, and we can test only a proportion of the possible edges to check whether they are present in $G$. If $G$ has high modularity, is the observed graph $G'$ likely to have high modularity? We see that this is indeed the case under a mild condition, in a natural model where we test edges at random. We find that $q^*(G') \geq q^*(G)-\varepsilon$ with probability at least $1-\varepsilon$, as long as the expected number edges in $G'$ is large enough. Similarly, $q^*(G') \leq q^*(G)+\varepsilon$ with probability at least $1-\varepsilon$, under the stronger condition that the expected average degree in $G'$ is large enough. Further, under this stronger condition, finding a good partition for $G'$ helps us to find a good partition for $G$. We also consider the vertex sampling model for partially observing the underlying graph: we find that for dense underlying graphs we may estimate the modularity by sampling constantly many vertices and observing the corresponding induced subgraph, but this does not hold for underlying graphs with a subquadratic number of edges. Finally we deduce some related results, for example showing that under-sampling tends to lead to overestimation of modularity.
We present a simple proof that finding a rank-$R$ canonical polyadic decomposition of 3-dimensional tensors over a finite field $\mathbb{F}$ is fixed-parameter tractable with respect to $R$ and $\mathbb{F}$. We also show some more concrete upper bounds on the time complexity of this problem.
We consider the problem of learning low-degree quantum objects up to $\varepsilon$-error in $\ell_2$-distance. We show the following results: $(i)$ unknown $n$-qubit degree-$d$ (in the Pauli basis) quantum channels and unitaries can be learned using $O(1/\varepsilon^d)$ queries (independent of $n$), $(ii)$ polynomials $p:\{-1,1\}^n\rightarrow [-1,1]$ arising from $d$-query quantum algorithms can be classically learned from $O((1/\varepsilon)^d\cdot \log n)$ many random examples $(x,p(x))$ (which implies learnability even for $d=O(\log n)$), and $(iii)$ degree-$d$ polynomials $p:\{-1,1\}^n\to [-1,1]$ can be learned through $O(1/\varepsilon^d)$ queries to a quantum unitary $U_p$ that block-encodes $p$. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded~polynomials.
In 2020, Behr defined the problem of edge coloring of signed graphs and showed that every signed graph $(G, \sigma)$ can be colored using exactly $\Delta(G)$ or $\Delta(G) + 1$ colors, where $\Delta(G)$ is the maximum degree in graph $G$. In this paper, we focus on products of signed graphs. We recall the definitions of the Cartesian, tensor, strong, and corona products of signed graphs and prove results for them. In particular, we show that $(1)$ the Cartesian product of $\Delta$-edge-colorable signed graphs is $\Delta$-edge-colorable, $(2)$ the tensor product of a $\Delta$-edge-colorable signed graph and a signed tree requires only $\Delta$ colors and $(3)$ the corona product of almost any two signed graphs is $\Delta$-edge-colorable. We also prove some results related to the coloring of products of signed paths and cycles.
Chemical reaction networks (CRNs) model systems where molecules interact according to a finite set of reactions such as $A + B \to C$, representing that if a molecule of $A$ and $B$ collide, they disappear and a molecule of $C$ is produced. CRNs can compute Boolean-valued predicates $\phi:\mathbb{N}^d \to \{0,1\}$ and integer-valued functions $f:\mathbb{N}^d \to \mathbb{N}$; for instance $X_1 + X_2 \to Y$ computes the function $\min(x_1,x_2)$. We study the computational power of execution bounded CRNs, in which only a finite number of reactions can occur from the initial configuration (e.g., ruling out reversible reactions such as $A \rightleftharpoons B$). The power and composability of such CRNs depend crucially on some other modeling choices that do not affect the computational power of CRNs with unbounded executions, namely whether an initial leader is present, and whether (for predicates) all species are required to "vote" for the Boolean output. If the CRN starts with an initial leader, and can allow only the leader to vote, then all semilinear predicates and functions can be stably computed in $O(n \log n)$ parallel time by execution bounded CRNs. However, if no initial leader is allowed, all species vote, and the CRN is "noncollapsing" (does not shrink from initially large to final $O(1)$ size configurations), then execution bounded CRNs are severely limited, able to compute only eventually constant predicates. A key tool is to characterize execution bounded CRNs as precisely those with a nonnegative linear potential function that is strictly decreased by every reaction, a result that may be of independent interest.
The correlated Erd\"os-R\'enyi random graph ensemble is a probability law on pairs of graphs with $n$ vertices, parametrized by their average degree $\lambda$ and their correlation coefficient $s$. It can be used as a benchmark for the graph alignment problem, in which the labels of the vertices of one of the graphs are reshuffled by an unknown permutation; the goal is to infer this permutation and thus properly match the pairs of vertices in both graphs. A series of recent works has unveiled the role of Otter's constant $\alpha$ (that controls the exponential rate of growth of the number of unlabeled rooted trees as a function of their sizes) in this problem: for $s>\sqrt{\alpha}$ and $\lambda$ large enough it is possible to recover in a time polynomial in $n$ a positive fraction of the hidden permutation. The exponent of this polynomial growth is however quite large and depends on the other parameters, which limits the range of applications of the algorithm. In this work we present a family of faster algorithms for this task, show through numerical simulations that their accuracy is only slightly reduced with respect to the original one, and conjecture that they undergo, in the large $\lambda$ limit, phase transitions at modified Otter's thresholds $\sqrt{\widehat{\alpha}}>\sqrt{\alpha}$, with $\widehat{\alpha}$ related to the enumeration of a restricted family of trees.
Given a graph $G$ such that each vertex $v_i$ has a value $f(v_i)$, the expanded-clique graph $H$ is the graph where each vertex $v_i$ of $G$ becomes a clique $V_i$ of size $f(v_i)$ and for each edge $v_iv_j \in E(G)$, there is a vertex of $V_i$ adjacent to an exclusive vertex of $V_j$. In this work, among the results, we present two characterizations of the expanded-clique graphs, one of them leads to a linear-time recognition algorithm. Regarding the domination number, we show that this problem is \NP-complete for planar bipartite $3$-expanded-clique graphs and for cubic line graphs of bipartite graphs.
A set $C$ of vertices in a graph $G=(V,E)$ is an identifying code if it is dominating and any two vertices of $V$ are dominated by distinct sets of codewords. This paper presents a survey of Iiro Honkala's contributions to the study of identifying codes with respect to several aspects: complexity of computing an identifying code, combinatorics in binary Hamming spaces, infinite grids, relationships between identifying codes and usual parameters in graphs, structural properties of graphs admitting identifying codes, and number of optimal identifying codes.
The Bayesian evidence, crucial ingredient for model selection, is arguably the most important quantity in Bayesian data analysis: at the same time, however, it is also one of the most difficult to compute. In this paper we present a hierarchical method that leverages on a multivariate normalised approximant for the posterior probability density to infer the evidence for a model in a hierarchical fashion using a set of posterior samples drawn using an arbitrary sampling scheme.
Correctness of results returned from mixed-integer linear programming (MILP) solvers is highly desirable, particularly in the context of applications such as hardware verification, compiler optimization, or machine-assisted theorem proving. To this end, VIPR is the first recently proposed certificate format for answers produced by MILP solvers. We design a schema to encode VIPR's inference rules as Satisfiability Modulo Theories (SMT) instances and show the equivalence of the certificates' correctness and the satisfiability of the corresponding SMT instances. In addition, we implement this schema with and without parallelization in a checker for VIPR certificates and test the viability of this approach on benchmark instances found in the literature with the cvc5 solver.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.