亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process fast camera data, at rates exceeding 100kfps, on $\textit{in situ}$ Field Programmable Gate Array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real-time. Our system utilizes a convolutional neural network (CNN) model which predicts the $n$=1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6$\mu$s and a throughput of up to 120kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.

相關內容

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. We ran our prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats.

Elliptic problems along smooth surfaces embedded in three dimensions occur in thin-membrane mechanics, electromagnetics (harmonic vector fields), and computational geometry. In this work, we present a parametrix-based integral equation method applicable to several forms of variable coefficient surface elliptic problems. Via the use of an approximate Green's function, the surface PDEs are transformed into well-conditioned integral equations. We demonstrate high-order numerical examples of this method applied to problems on general surfaces using a variant of the fast multipole method based on smooth interpolation properties of the kernel. Lastly, we discuss extensions of the method to surfaces with boundaries.

In Koopman operator theory, a finite-dimensional nonlinear system is transformed into an infinite but linear system using a set of observable functions. However, manually selecting observable functions that span the invariant subspace of the Koopman operator based on prior knowledge is inefficient and challenging, particularly when little or no information is available about the underlying systems. Furthermore, current methodologies tend to disregard the importance of the invertibility of observable functions, which leads to inaccurate results. To address these challenges, we propose the so-called FlowDMD, aka Flow-based Dynamic Mode Decomposition, that utilizes the Coupling Flow Invertible Neural Network (CF-INN) framework. FlowDMD leverages the intrinsically invertible characteristics of the CF-INN to learn the invariant subspaces of the Koopman operator and accurately reconstruct state variables. Numerical experiments demonstrate the superior performance of our algorithm compared to state-of-the-art methodologies.

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.

We consider interior penalty discontinuous Galerkin discretizations of time-harmonic wave propagation problems modeled by the Helmholtz equation, and derive novel a priori and a posteriori estimates. Our analysis classically relies on duality arguments of Aubin-Nitsche type, and its originality is that it applies under minimal regularity assumptions. The estimates we obtain directly generalize known results for conforming discretizations, namely that the discrete solution is optimal in a suitable energy norm and that the error can be explicitly controlled by a posteriori estimators, provided the mesh is sufficiently fine.

In a variety of application areas, there is interest in assessing evidence of differences in the intensity of event realizations between groups. For example, in cancer genomic studies collecting data on rare variants, the focus is on assessing whether and how the variant profile changes with the disease subtype. Motivated by this application, we develop multiresolution nonparametric Bayes tests for differential mutation rates across groups. The multiresolution approach yields fast and accurate detection of spatial clusters of rare variants, and our nonparametric Bayes framework provides great flexibility for modeling the intensities of rare variants. Some theoretical properties are also assessed, including weak consistency of our Dirichlet Process-Poisson-Gamma mixture over multiple resolutions. Simulation studies illustrate excellent small sample properties relative to competitors, and we apply the method to detect rare variants related to common variable immunodeficiency from whole exome sequencing data on 215 patients and over 60,027 control subjects.

We develop qutrit circuit models for discrete-time three-state quantum walks on Cayley graphs corresponding to Dihedral groups $D_N$ and the additive groups of integers modulo any positive integer $N$. The proposed circuits comprise of elementary qutrit gates such as qutrit rotation gates, qutrit-$X$ gates and two-qutrit controlled-$X$ gates. First, we propose qutrit circuit representation of special unitary matrices of order three, and the block diagonal special unitary matrices with $3\times 3$ diagonal blocks, which correspond to multi-controlled $X$ gates and permutations of qutrit Toffoli gates. We show that one-layer qutrit circuit model need $O(3nN)$ two-qutrit control gates and $O(3N)$ one-qutrit rotation gates for these quantum walks when $N=3^n$. Finally, we numerically simulate these circuits to mimic its performance such as time-averaged probability of finding the walker at any vertex on noisy quantum computers. The simulated results for the time-averaged probability distributions for noisy and noiseless walks are further compared using KL-divergence and total variation distance. These results show that noise in gates in the circuits significantly impacts the distributions than amplitude damping or phase damping errors.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Human cognition operates on a "Global-first" cognitive mechanism, prioritizing information processing based on coarse-grained details. This mechanism inherently possesses an adaptive multi-granularity description capacity, resulting in computational traits such as efficiency, robustness, and interpretability. The analysis pattern reliance on the finest granularity and single-granularity makes most existing computational methods less efficient, robust, and interpretable, which is an important reason for the current lack of interpretability in neural networks. Multi-granularity granular-ball computing employs granular-balls of varying sizes to daptively represent and envelop the sample space, facilitating learning based on these granular-balls. Given that the number of coarse-grained "granular-balls" is fewer than sample points, granular-ball computing proves more efficient. Moreover, the inherent coarse-grained nature of granular-balls reduces susceptibility to fine-grained sample disturbances, enhancing robustness. The multi-granularity construct of granular-balls generates topological structures and coarse-grained descriptions, naturally augmenting interpretability. Granular-ball computing has successfully ventured into diverse AI domains, fostering the development of innovative theoretical methods, including granular-ball classifiers, clustering techniques, neural networks, rough sets, and evolutionary computing. This has notably ameliorated the efficiency, noise robustness, and interpretability of traditional methods. Overall, granular-ball computing is a rare and innovative theoretical approach in AI that can adaptively and simultaneously enhance efficiency, robustness, and interpretability. This article delves into the main application landscapes for granular-ball computing, aiming to equip future researchers with references and insights to refine and expand this promising theory.

北京阿比特科技有限公司