亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Privacy engineering, as an emerging field of research and practice, comprises the technical capabilities and management processes needed to implement, deploy, and operate privacy features and controls in working systems. For that, software practitioners and other stakeholders in software companies need to work cooperatively toward building privacy-preserving businesses and engineering solutions. Significant research has been done to understand the software practitioners' perceptions of information privacy, but more emphasis should be given to the uptake of concrete privacy engineering components. This research delves into the software practitioners' perspectives and mindset, organisational aspects, and current practices on privacy and its engineering processes. A total of 30 practitioners from nine countries and backgrounds were interviewed, sharing their experiences and voicing their opinions on a broad range of privacy topics. The thematic analysis methodology was adopted to code the interview data qualitatively and construct a rich and nuanced thematic framework. As a result, we identified three critical interconnected themes that compose our thematic framework for privacy engineering "in the wild": (1) personal privacy mindset and stance, categorised into practitioners' privacy knowledge, attitudes and behaviours; (2) organisational privacy aspects, such as decision-power and positive and negative examples of privacy climate; and, (3) privacy engineering practices, such as procedures and controls concretely used in the industry. Among the main findings, this study provides many insights about the state-of-the-practice of privacy engineering, pointing to a positive influence of privacy laws (e.g., EU General Data Protection Regulation) on practitioners' behaviours and organisations' cultures. Aspects such as organisational privacy culture and climate were also confirmed to have [...].

相關內容

《工程》是中國工程院(CAE)于2015年推出的國際開放存取期刊。其目的是提供一個高水平的平臺,傳播和分享工程研發的前沿進展、當前主要研究成果和關鍵成果;報告工程科學的進展,討論工程發展的熱點、興趣領域、挑戰和前景,在工程中考慮人與環境的福祉和倫理道德,鼓勵具有深遠經濟和社會意義的工程突破和創新,使之達到國際先進水平,成為新的生產力,從而改變世界,造福人類,創造新的未來。 期刊鏈接: · Processing(編程語言) · 多峰值 · 可辨認的 · 講稿 ·
2023 年 8 月 21 日

The primary goal of any company is to increase its profits by improving both the quality of its products and how they are advertised. In this context, neuromarketing seeks to enhance the promotion of products and generate a greater acceptance on potential buyers. Traditionally, neuromarketing studies have relied on a single biosignal to obtain feedback from presented stimuli. However, thanks to new devices and technological advances studying this area of knowledge, recent trends indicate a shift towards the fusion of diverse biosignals. An example is the usage of electroencephalography for understanding the impact of an advertisement at the neural level and visual tracking to identify the stimuli that induce such impacts. This emerging pattern determines which biosignals to employ for achieving specific neuromarketing objectives. Furthermore, the fusion of data from multiple sources demands advanced processing methodologies. Despite these complexities, there is a lack of literature that adequately collates and organizes the various data sources and the applied processing techniques for the research objectives pursued. To address these challenges, the current paper conducts a comprehensive analysis of the objectives, biosignals, and data processing techniques employed in neuromarketing research. This study provides both the technical definition and a graphical distribution of the elements under revision. Additionally, it presents a categorization based on research objectives and provides an overview of the combinatory methodologies employed. After this, the paper examines primary public datasets designed for neuromarketing research together with others whose main purpose is not neuromarketing, but can be used for this matter. Ultimately, this work provides a historical perspective on the evolution of techniques across various phases over recent years and enumerates key lessons learned.

The logic of information flows (LIF) has recently been proposed as a general framework in the field of knowledge representation. In this framework, tasks of procedural nature can still be modeled in a declarative, logic-based fashion. In this paper, we focus on the task of query processing under limited access patterns, a well-studied problem in the database literature. We show that LIF is well-suited for modeling this task. Toward this goal, we introduce a variant of LIF called "forward" LIF (FLIF), in a first-order setting. FLIF takes a novel graph-navigational approach; it is an XPath-like language that nevertheless turns out to be equivalent to the "executable" fragment of first-order logic defined by Nash and Lud\"ascher. One can also classify the variables in FLIF expressions as inputs and outputs. Expressions where inputs and outputs are disjoint, referred to as io-disjoint FLIF expressions, allow a particularly transparent translation into algebraic query plans that respect the access limitations. Finally, we show that general FLIF expressions can always be put into io-disjoint form.

Matrix factorizations in dual number algebra, a hypercomplex system, have been applied to kinematics, mechanisms, and other fields recently. We develop an approach to identify spatiotemporal patterns in the brain such as traveling waves using the singular value decomposition of dual matrices in this paper. Theoretically, we propose the compact dual singular value decomposition (CDSVD) of dual complex matrices with explicit expressions as well as a necessary and sufficient condition for its existence. Furthermore, based on the CDSVD, we report on the optimal solution to the best rank-$k$ approximation under a newly defined quasi-metric in the dual complex number system. The CDSVD is also related to the dual Moore-Penrose generalized inverse. Numerically, comparisons with other available algorithms are conducted, which indicate less computational costs of our proposed CDSVD. In addition, the infinitesimal part of the CDSVD can identify the true rank of the original matrix from the noise-added matrix, but the classical SVD cannot. Next, we employ experiments on simulated time-series data and a road monitoring video to demonstrate the beneficial effect of the infinitesimal parts of dual matrices in spatiotemporal pattern identification. Finally, we apply this approach to the large-scale brain fMRI data, identify three kinds of traveling waves, and further validate the consistency between our analytical results and the current knowledge of cerebral cortex function.

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy.

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司