亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In multiuser communication systems, user scheduling and beamforming design are two fundamental problems, which are usually investigated separately in the existing literature. In this work, we focus on the joint optimization of user scheduling and beamforming design with the goal of maximizing the set cardinality of scheduled users. Observing that this problem is computationally challenging due to the non-convex objective function and coupled constraints in continuous and binary variables. To tackle these difficulties, we first propose an iterative optimization algorithm (IOA) relying on the successive convex approximation and uplink-downlink duality theory. Then, motivated by IOA and graph neural networks, a joint user scheduling and power allocation network (JEEPON) is developed to address the investigated problem in an unsupervised manner. The effectiveness of IOA and JEEPON is verified by various numerical results, and the latter achieves a close performance but lower complexity compared with IOA and the greedy-based algorithm. Remarkably, the proposed JEEPON is also competitive in terms of the generalization ability in dynamic wireless network scenarios.

相關內容

Recently, deep neural network (DNN) has been widely adopted in the design of intelligent communication systems thanks to its strong learning ability and low testing complexity. However, most current offline DNN-based methods still suffer from unsatisfactory performance, limited generalization ability, and poor interpretability. In this article, we propose an online DNN-based approach to solve general optimization problems in wireless communications, where a dedicated DNN is trained for each data sample. By treating the optimization variables and the objective function as network parameters and loss function, respectively, the optimization problem can be solved equivalently through network training. Thanks to the online optimization nature and meaningful network parameters, the proposed approach owns strong generalization ability and interpretability, while its superior performance is demonstrated through a practical example of joint beamforming in intelligent reflecting surface (IRS)-aided multi-user multiple-input multiple-output (MIMO) systems. Simulation results show that the proposed online DNN outperforms conventional offline DNN and state-of-the-art iterative optimization algorithm, but with low complexity.

This paper considers the one-bit precoding problem for the multiuser downlink massive multiple-input multiple-output (MIMO) system with phase shift keying (PSK) modulation and focuses on the celebrated constructive interference (CI)-based problem formulation. The existence of the discrete one-bit constraint makes the problem generally hard to solve. In this paper, we propose an efficient negative $\ell_1$ penalty approach for finding a high-quality solution of the considered problem. Specifically, we first propose a novel negative $\ell_1$ penalty model, which penalizes the one-bit constraint into the objective with a negative $\ell_1$-norm term, and show the equivalence between (global and local) solutions of the original problem and the penalty problem when the penalty parameter is sufficiently large. We further transform the penalty model into an equivalent min-max problem and propose an efficient alternating optimization (AO) algorithm for solving it. The AO algorithm enjoys low per-iteration complexity and is guaranteed to converge to the stationary point of the min-max problem. Numerical results show that, compared against the state-of-the-art CI-based algorithms, the proposed algorithm generally achieves better bit-error-rate (BER) performance with lower computational cost.

In reconfigurable intelligent surface (RIS) aided millimeter-wave (mmWave) communication systems, in order to overcome the limitation of the conventional channel state information (CSI) acquisition techniques, this paper proposes a location information assisted beamforming design without the requirement of the conventional channel training process. First, we establish the geometrical relation between the channel model and the user location, based on which we derive an approximate CSI error bound based on the user location error by means of Taylor approximation, triangle and power mean inequalities, and semidefinite relaxation (SDR). Second, for combating the uncertainty of the location error, we formulate a worst-case robust beamforming optimization problem. To solve the problem efficiently, we develop a novel iterative algorithm by utilizing various optimization tools such as Lagrange multiplier, matrix inversion lemma, SDR, as well as branch-and-bound (BnB). Additionally, we provide sufficient conditions for the SDR to output rank-one solutions, and modify the BnB algorithm to acquire the phase shift solution under an arbitrary constraint of possible phase shift values. Finally, we analyse the algorithm convergence and complexity, and carry out simulations to validate the theoretical derivation of the CSI error bound and the robustness of the proposed algorithm. Compared with the existing non-robust approach and the robust beamforming techniques based on S-procedure and penalty convex-concave procedure (CCP), our method can converge more quickly and achieve better performance in terms of the worst-case signal-to-noise ratio (SNR) at the receiver.

We study a competitive online optimization problem with multiple inventories. In the problem, an online decision maker seeks to optimize the allocation of multiple capacity-limited inventories over a slotted horizon, while the allocation constraints and revenue function come online at each slot. The problem is challenging as we need to allocate limited inventories under adversarial revenue functions and allocation constraints, while our decisions are coupled among multiple inventories and different slots. We propose a divide-and-conquer approach that allows us to decompose the problem into several single inventory problems and solve it in a two-step manner with almost no optimality loss in terms of competitive ratio (CR). Our approach provides new angles, insights and results to the problem, which differs from the widely-adopted primal-and-dual framework. Specifically, when the gradients of the revenue functions are bounded in a positive range, we show that our approach can achieve a tight CR that is optimal when the number of inventories is small, which is better than all existing ones. For an arbitrary number of inventories, the CR we achieve is within an additive constant of one to a lower bound of the best possible CR among all online algorithms for the problem. We further characterize a general condition for generalizing our approach to different applications. For example, for a generalized one-way trading problem with price elasticity, where no previous results are available, our approach obtains an online algorithm that achieves the optimal CR up to a constant factor.

We consider the problem of estimating a continuous-time Gauss-Markov source process observed through a vector Gaussian channel with an adjustable channel gain matrix. For a given (generally time-varying) channel gain matrix, we provide formulas to compute (i) the mean-square estimation error attainable by the classical Kalman-Bucy filter, and (ii) the mutual information between the source process and its Kalman-Bucy estimate. We then formulate a novel "optimal channel gain control problem" where the objective is to control the channel gain matrix strategically to minimize the weighted sum of these two performance metrics. To develop insights into the optimal solution, we first consider the problem of controlling a time-varying channel gain over a finite time interval. A necessary optimality condition is derived based on Pontryagin's minimum principle. For a scalar system, we show that the optimal channel gain is a piece-wise constant signal with at most two switches. We also consider the problem of designing the optimal time-invariant gain to minimize the average cost over an infinite time horizon. A novel semidefinite programming (SDP) heuristic is proposed and the exactness of the solution is discussed.

Radar sensing will be integrated into the 6G communication system to support various applications. In this integrated sensing and communication system, a radar target may also be a communication channel scatterer. In this case, the radar and communication channels exhibit certain joint burst sparsity. We propose a two-stage joint pilot optimization, target detection and channel estimation scheme to exploit such joint burst sparsity and pilot beamforming gain to enhance detection/estimation performance. In Stage 1, the base station (BS) sends downlink pilots (DP) for initial target search, and the user sends uplink pilots (UP) for channel estimation. Then the BS performs joint target detection and channel estimation based on the reflected DP and received UP signals. In Stage 2, the BS exploits the prior information obtained in Stage 1 to optimize the DP signal to achieve beamforming gain and further refine the performance. A Turbo Sparse Bayesian inference algorithm is proposed for joint target detection and channel estimation in both stages. The pilot optimization problem in Stage 2 is a semi-definite programming with rank-1 constraints. By replacing the rank-1 constraint with a tight and smooth approximation, we propose an efficient pilot optimization algorithm based on the majorization-minimization method. Simulations verify the advantages of the proposed scheme.

Device-to-device (D2D) links scheduling for avoiding excessive interference is critical to the success of wireless D2D communications. Most of the traditional scheduling schemes only consider the maximum throughput or fairness of the system and do not consider the freshness of information. In this paper, we propose a novel D2D links scheduling scheme to optimize an age of information (AoI) and throughput jointly scheduling problem when D2D links transmit packets under the last-come-first-serve policy with packet-replacement (LCFS-PR). It is motivated by the fact that the maximum throughput scheduling may reduce the activation probability of links with poor channel conditions, which results in terrible AoI performance. Specifically, We derive the expression of the overall average AoI and throughput of the network under the spatio-temporal interfering queue dynamics with the mean-field assumption. Moreover, a neural network structure is proposed to learn the mapping from the geographic location to the optimal scheduling parameters under a stationary randomized policy, where the scheduling decision can be made without estimating the channel state information(CSI) after the neural network is well-trained. To overcome the problem that implicit loss functions cannot be back-propagated, we derive a numerical solution of the gradient. Finally, numerical results reveal that the performance of the deep learning approach is close to that of a local optimal algorithm which has a higher computational complexity. The trade-off curve of AoI and throughput is also obtained, where the AoI tends to infinity when throughput is maximized.

This paper considers the design of optimal resource allocation policies in wireless communication systems which are generically modeled as a functional optimization problem with stochastic constraints. These optimization problems have the structure of a learning problem in which the statistical loss appears as a constraint, motivating the development of learning methodologies to attempt their solution. To handle stochastic constraints, training is undertaken in the dual domain. It is shown that this can be done with small loss of optimality when using near-universal learning parameterizations. In particular, since deep neural networks (DNN) are near-universal their use is advocated and explored. DNNs are trained here with a model-free primal-dual method that simultaneously learns a DNN parametrization of the resource allocation policy and optimizes the primal and dual variables. Numerical simulations demonstrate the strong performance of the proposed approach on a number of common wireless resource allocation problems.

Millimeter wave (mmWave) is a key technology for fifth-generation (5G) and beyond communications. Hybrid beamforming has been proposed for large-scale antenna systems in mmWave communications. Existing hybrid beamforming designs based on infinite-resolution phase shifters (PSs) are impractical due to hardware cost and power consumption. In this paper, we propose an unsupervised-learning-based scheme to jointly design the analog precoder and combiner with low-resolution PSs for multiuser multiple-input multiple-output (MU-MIMO) systems. We transform the analog precoder and combiner design problem into a phase classification problem and propose a generic neural network architecture, termed the phase classification network (PCNet), capable of producing solutions of various PS resolutions. Simulation results demonstrate the superior sum-rate and complexity performance of the proposed scheme, as compared to state-of-the-art hybrid beamforming designs for the most commonly used low-resolution PS configurations.

The rapid development of virtual network architecture makes it possible for wireless network to be widely used. With the popularity of artificial intelligence (AI) industry in daily life, efficient resource allocation of wireless network has become a problem. Especially when network users request wireless network resources from different management domains, they still face many practical problems. From the perspective of virtual network embedding (VNE), this paper designs and implements a multi-objective optimization VNE algorithm for wireless network resource allocation. Resource allocation in virtual network is essentially a problem of allocating underlying resources for virtual network requests (VNRs). According to the proposed objective formula, we consider the optimization mapping cost, network delay and VNR acceptance rate. VNE is completed by node mapping and link mapping. In the experiment and simulation stage, it is compared with other VNE algorithms, the cross domain VNE algorithm proposed in this paper is optimal in the above three indicators. This shows the effectiveness of the algorithm in wireless network resource allocation.

北京阿比特科技有限公司