亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We are interested in estimating the effect of a treatment applied to individuals at multiple sites, where data is stored locally for each site. Due to privacy constraints, individual-level data cannot be shared across sites; the sites may also have heterogeneous populations and treatment assignment mechanisms. Motivated by these considerations, we develop federated methods to draw inference on the average treatment effects of combined data across sites. Our methods first compute summary statistics locally using propensity scores and then aggregate these statistics across sites to obtain point and variance estimators of average treatment effects. We show that these estimators are consistent and asymptotically normal. To achieve these asymptotic properties, we find that the aggregation schemes need to account for the heterogeneity in treatment assignments and in outcomes across sites. We demonstrate the validity of our federated methods through a comparative study of two large medical claims databases.

相關內容

Subgraphs of a larger global graph may be distributed across multiple devices, and only locally accessible due to privacy restrictions, although there may be links between subgraphs. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity between subgraphs comprising different communities of a global graph, consequently collapsing the incompatible knowledge from local GNN models. To this end, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs rather than learning a single global model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. Since the server cannot access the subgraph in each client, FED-PUB utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use the similarities to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which it significantly outperforms relevant baselines. Our code is available at //github.com/JinheonBaek/FED-PUB.

A pure quantum state of $n$ parties associated with the Hilbert space $\CC^{d_1}\otimes \CC^{d_2}\otimes\cdots\otimes \CC^{d_n}$ is called $k$-uniform if all the reductions to $k$-parties are maximally mixed. The $n$ partite system is called homogenous if the local dimension $d_1=d_2=\cdots=d_n$, while it is called heterogeneous if the local dimension are not all equal. $k$-uniform sates play an important role in quantum information theory. There are many progress in characterizing and constructing $k$-uniform states in homogeneous systems. However, the study of entanglement for heterogeneous systems is much more challenging than that for the homogeneous case. There are very few results known for the $k$-uniform states in heterogeneous systems for $k>3$. We present two general methods to construct $k$-uniform states in the heterogeneous systems for general $k$. The first construction is derived from the error correcting codes by establishing a connection between irredundant mixed orthogonal arrays and error correcting codes. We can produce many new $k$-uniform states such that the local dimension of each subsystem can be a prime power. The second construction is derived from a matrix $H$ meeting the condition that $H_{A\times \bar{A}}+H^T_{\bar{A}\times A}$ has full rank for any row index set $A$ of size $k$. These matrix construction can provide more flexible choices for the local dimensions, i.e., the local dimensions can be any integer (not necessarily prime power) subject to some constraints. Our constructions imply that for any positive integer $k$, one can construct $k$-uniform states of a heterogeneous system in many different Hilbert spaces.

We consider the problem of learning personalized decision policies on observational data from heterogeneous data sources. Moreover, we examine this problem in the federated setting where a central server aims to learn a policy on the data distributed across the heterogeneous sources without exchanging their raw data. We present a federated policy learning algorithm based on aggregation of local policies trained with doubly robust offline policy evaluation and learning strategies. We provide a novel regret analysis for our approach that establishes a finite-sample upper bound on a notion of global regret across a distribution of clients. In addition, for any individual client, we establish a corresponding local regret upper bound characterized by the presence of distribution shift relative to all other clients. We support our theoretical findings with experimental results. Our analysis and experiments provide insights into the value of heterogeneous client participation in federation for policy learning in heterogeneous settings.

In experimental and observational studies, there is often interest in understanding the mechanism through which an intervention program improves the final outcome. Causal mediation analyses have been developed for this purpose but are primarily considered for the case of perfect treatment compliance, with a few exceptions that require the exclusion restriction assumption. In this article, we consider a semiparametric framework for assessing causal mediation in the presence of treatment noncompliance without the exclusion restriction. We propose a set of assumptions to identify the natural mediation effects for the entire study population and further, for the principal natural mediation effects within subpopulations characterized by the potential compliance behavior. We derive the efficient influence functions for the principal natural mediation effect estimands and motivate a set of multiply robust estimators for inference. The multiply robust estimators remain consistent to their respective estimands under four types of misspecification of the working models and are efficient when all nuisance models are correctly specified. We further introduce a nonparametric extension of the proposed estimators by incorporating machine learners to estimate the nuisance functions. Sensitivity analysis methods are also discussed for addressing key identification assumptions. We demonstrate the proposed methods via simulations and an application to a real data example.

Evolutionary symbolic regression (SR) fits a symbolic equation to data, which gives a concise interpretable model. We explore using SR as a method to propose which data to gather in an active learning setting with physical constraints. SR with active learning proposes which experiments to do next. Active learning is done with query by committee, where the Pareto frontier of equations is the committee. The physical constraints improve proposed equations in very low data settings. These approaches reduce the data required for SR and achieves state of the art results in data required to rediscover known equations.

Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an existing intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel interventions (\emph{e.g.}, a newly invented drug), which these methods do not address. Here, we consider zero-shot causal learning: predicting the personalized effects of a novel intervention. We propose CaML, a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task. CaML trains a single meta-model across thousands of tasks, each constructed by sampling an intervention, along with its recipients and nonrecipients. By leveraging both intervention information (\emph{e.g.}, a drug's attributes) and individual features~(\emph{e.g.}, a patient's history), CaML is able to predict the personalized effects of novel interventions that do not exist at the time of training. Experimental results on real world datasets in large-scale medical claims and cell-line perturbations demonstrate the effectiveness of our approach. Most strikingly, CaML's zero-shot predictions outperform even strong baselines trained directly on data from the test interventions.

This article proposes a meta-learning method for estimating the conditional average treatment effect (CATE) from a few observational data. The proposed method learns how to estimate CATEs from multiple tasks and uses the knowledge for unseen tasks. In the proposed method, based on the meta-learner framework, we decompose the CATE estimation problem into sub-problems. For each sub-problem, we formulate our estimation models using neural networks with task-shared and task-specific parameters. With our formulation, we can obtain optimal task-specific parameters in a closed form that are differentiable with respect to task-shared parameters, making it possible to perform effective meta-learning. The task-shared parameters are trained such that the expected CATE estimation performance in few-shot settings is improved by minimizing the difference between a CATE estimated with a large amount of data and one estimated with just a few data. Our experimental results demonstrate that our method outperforms the existing meta-learning approaches and CATE estimation methods.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司