To obtain the highest confidence on the correction of numerical simulation programs for the resolution of Partial Differential Equations (PDEs), one has to formalize the mathematical notions and results that allow to establish the soundness of the approach. The finite element method is one of the popular tools for the numerical resolution of a wide range of PDEs. The purpose of this document is to provide the formal proof community with very detailed pen-and-paper proofs for the construction of the Lagrange finite elements of any degree on simplices in positive dimension.
In this paper we study semi-discrete and fully discrete evolving surface finite element schemes for the Cahn-Hilliard equation with a logarithmic potential. Specifically we consider linear finite elements discretising space and backward Euler time discretisation. Our analysis relies on a specific geometric assumption on the evolution of the surface. Our main results are $L^2_{H^1}$ error bounds for both the semi-discrete and fully discrete schemes, and we provide some numerical results.
After nearly two decades of research, the question of a quantum PCP theorem for quantum Constraint Satisfaction Problems (CSPs) remains wide open. As a result, proving QMA-hardness of approximation for ground state energy estimation has remained elusive. Recently, it was shown [Bittel, Gharibian, Kliesch, CCC 2023] that a natural problem involving variational quantum circuits is QCMA-hard to approximate within ratio N^(1-eps) for any eps > 0 and N the input size. Unfortunately, this problem was not related to quantum CSPs, leaving the question of hardness of approximation for quantum CSPs open. In this work, we show that if instead of focusing on ground state energies, one considers computing properties of the ground space, QCMA-hardness of computing ground space properties can be shown. In particular, we show that it is (1) QCMA-complete within ratio N^(1-eps) to approximate the Ground State Connectivity problem (GSCON), and (2) QCMA-hard within the same ratio to estimate the amount of entanglement of a local Hamiltonian's ground state, denoted Ground State Entanglement (GSE). As a bonus, a simplification of our construction yields NP-completeness of approximation for a natural k-SAT reconfiguration problem, to be contrasted with the recent PCP-based PSPACE hardness of approximation results for a different definition of k-SAT reconfiguration [Karthik C.S. and Manurangsi, 2023, and Hirahara, Ohsaka, STOC 2024].
We provide abstract, general and highly uniform rates of asymptotic regularity for a generalized stochastic Halpern-style iteration, which incorporates a second mapping in the style of a Krasnoselskii-Mann iteration. This iteration is general in two ways: First, it incorporates stochasticity in a completely abstract way rather than fixing a sampling method; secondly, it includes as special cases stochastic versions of various schemes from the optimization literature, including Halpern's iteration as well as a Krasnoselskii-Mann iteration with Tikhonov regularization terms in the sense of Bo\c{t}, Csetnek and Meier. For these particular cases, we in particular obtain linear rates of asymptotic regularity, matching (or improving) the currently best known rates for these iterations in stochastic optimization, and quadratic rates of asymptotic regularity are obtained in the context of inner product spaces for the general iteration. We utilize these rates to give bounds on the oracle complexity of such iterations under suitable variance assumptions and batching strategies, again presented in an abstract style. Finally, we sketch how the schemes presented here can be instantiated in the context of reinforcement learning to yield novel methods for Q-learning.
Generalized linear mixed models (GLMMs) are a widely used tool in statistical analysis. The main bottleneck of many computational approaches lies in the inversion of the high dimensional precision matrices associated with the random effects. Such matrices are typically sparse; however, the sparsity pattern resembles a multi partite random graph, which does not lend itself well to default sparse linear algebra techniques. Notably, we show that, for typical GLMMs, the Cholesky factor is dense even when the original precision is sparse. We thus turn to approximate iterative techniques, in particular to the conjugate gradient (CG) method. We combine a detailed analysis of the spectrum of said precision matrices with results from random graph theory to show that CG-based methods applied to high-dimensional GLMMs typically achieve a fixed approximation error with a total cost that scales linearly with the number of parameters and observations. Numerical illustrations with both real and simulated data confirm the theoretical findings, while at the same time illustrating situations, such as nested structures, where CG-based methods struggle.
In this paper, we introduce a highly accurate and efficient numerical solver for the radial Kohn--Sham equation. The equation is discretized using a high-order finite element method, with its performance further improved by incorporating a parameter-free moving mesh technique. This approach greatly reduces the number of elements required to achieve the desired precision. In practice, the mesh redistribution involves no more than three steps, ensuring the algorithm remains computationally efficient. Remarkably, with a maximum of $13$ elements, we successfully reproduce the NIST database results for elements with atomic numbers ranging from $1$ to $92$.
In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.
A Riemannian geometric framework for Markov chain Monte Carlo (MCMC) is developed where using the Fisher-Rao metric on the manifold of probability density functions (pdfs), informed proposal densities for Metropolis-Hastings (MH) algorithms are constructed. We exploit the square-root representation of pdfs under which the Fisher-Rao metric boils down to the standard $L^2$ metric on the positive orthant of the unit hypersphere. The square-root representation allows us to easily compute the geodesic distance between densities, resulting in a straightforward implementation of the proposed geometric MCMC methodology. Unlike the random walk MH that blindly proposes a candidate state using no information about the target, the geometric MH algorithms move an uninformed base density (e.g., a random walk proposal density) towards different global/local approximations of the target density, allowing effective exploration of the distribution simultaneously at different granular levels of the state space. We compare the proposed geometric MH algorithm with other MCMC algorithms for various Markov chain orderings, namely the covariance, efficiency, Peskun, and spectral gap orderings. The superior performance of the geometric algorithms over other MH algorithms like the random walk Metropolis, independent MH, and variants of Metropolis adjusted Langevin algorithms is demonstrated in the context of various multimodal, nonlinear, and high dimensional examples. In particular, we use extensive simulation and real data applications to compare these algorithms for analyzing mixture models, logistic regression models, spatial generalized linear mixed models and ultra-high dimensional Bayesian variable selection models. A publicly available R package accompanies the article.
We prove explicit bounds on the exponential rate of convergence for the momentum stochastic gradient descent scheme (MSGD) for arbitrary, fixed hyperparameters (learning rate, friction parameter) and its continuous-in-time counterpart in the context of non-convex optimization. In the small step-size regime and in the case of flat minima or large noise intensities, these bounds prove faster convergence of MSGD compared to plain stochastic gradient descent (SGD). The results are shown for objective functions satisfying a local Polyak-Lojasiewicz inequality and under assumptions on the variance of MSGD that are satisfied in overparametrized settings. Moreover, we analyze the optimal choice of the friction parameter and show that the MSGD process almost surely converges to a local minimum.
There has been a surge of interest in uncertainty quantification for parametric partial differential equations (PDEs) with Gevrey regular inputs. The Gevrey class contains functions that are infinitely smooth with a growth condition on the higher-order partial derivatives, but which are nonetheless not analytic in general. Recent studies by Chernov and Le (Comput. Math. Appl., 2024, and SIAM J. Numer. Anal., 2024) as well as Harbrecht, Schmidlin, and Schwab (Math. Models Methods Appl. Sci., 2024) analyze the setting wherein the input random field is assumed to be uniformly bounded with respect to the uncertain parameters. In this paper, we relax this assumption and allow for parameter-dependent bounds. The parametric inputs are modeled as generalized Gaussian random variables, and we analyze the application of quasi-Monte Carlo (QMC) integration to assess the PDE response statistics using randomly shifted rank-1 lattice rules. In addition to the QMC error analysis, we also consider the dimension truncation and finite element errors in this setting.
We propose a novel, highly efficient, second-order accurate, long-time unconditionally stable numerical scheme for a class of finite-dimensional nonlinear models that are of importance in geophysical fluid dynamics. The scheme is highly efficient in the sense that only a (fixed) symmetric positive definite linear problem (with varying right hand sides) is involved at each time-step. The solutions to the scheme are uniformly bounded for all time. We show that the scheme is able to capture the long-time dynamics of the underlying geophysical model, with the global attractors as well as the invariant measures of the scheme converge to those of the original model as the step size approaches zero. In our numerical experiments, we take an indirect approach, using long-term statistics to approximate the invariant measures. Our results suggest that the convergence rate of the long-term statistics, as a function of terminal time, is approximately first order using the Jensen-Shannon metric and half-order using the L1 metric. This implies that very long time simulation is needed in order to capture a few significant digits of long time statistics (climate) correct. Nevertheless, the second order scheme's performance remains superior to that of the first order one, requiring significantly less time to reach a small neighborhood of statistical equilibrium for a given step size.