亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In network coding, a flag code is a collection of flags, that is, sequences of nested subspaces of a vector space over a finite field. Due to its definition as the sum of the corresponding subspace distances, the flag distance parameter encloses a hidden combinatorial structure. To bring it to light, in this paper, we interpret flag distances by means of distance paths drawn in a convenient distance support. The shape of such a support allows us to create an ad hoc associated Ferrers diagram frame where we develop a combinatorial approach to flag codes by relating the possible realizations of their minimum distance to different partitions of appropriate integers. This novel viewpoint permits to establish noteworthy connections between the flag code parameters and the ones of its projected codes in terms of well known concepts coming from the classical partitions theory.

相關內容

In this paper, we provide a framework for constructing entanglement-assisted quantum error-correcting codes (EAQECCs) from classical additive codes over a finite commutative local Frobenius ring. We derive a formula for the minimum number of entanglement qudits required to construct an EAQECC from a linear code over the ring $\mathbb{Z}_{p^s}$. This is used to obtain an exact expression for the minimum number of entanglement qudits required to construct an EAQECC from an additive code over a Galois ring, which significantly extends known results for EAQECCs over finite fields.

Much recent interest has focused on the design of optimization algorithms from the discretization of an associated optimization flow, i.e., a system of differential equations (ODEs) whose trajectories solve an associated optimization problem. Such a design approach poses an important problem: how to find a principled methodology to design and discretize appropriate ODEs. This paper aims to provide a solution to this problem through the use of contraction theory. We first introduce general mathematical results that explain how contraction theory guarantees the stability of the implicit and explicit Euler integration methods. Then, we propose a novel system of ODEs, namely the Accelerated-Contracting-Nesterov flow, and use contraction theory to establish it is an optimization flow with exponential convergence rate, from which the linear convergence rate of its associated optimization algorithm is immediately established. Remarkably, a simple explicit Euler discretization of this flow corresponds to the Nesterov acceleration method. Finally, we present how our approach leads to performance guarantees in the design of optimization algorithms for time-varying optimization problems.

Detailed dynamical systems models used in life sciences may include dozens or even hundreds of state variables. Models of large dimension are not only harder from the numerical perspective (e.g., for parameter estimation or simulation), but it is also becoming challenging to derive mechanistic insights from such models. Exact model reduction is a way to address this issue by finding a self-consistent lower-dimensional projection of the corresponding dynamical system. A recent algorithm CLUE allows one to construct an exact linear reduction of the smallest possible dimension such that the fixed variables of interest are preserved. However, CLUE is restricted to systems with polynomial dynamics. Since rational dynamics occurs frequently in the life sciences (e.g., Michaelis-Menten or Hill kinetics), it is desirable to extend CLUE to the models with rational dynamics. In this paper, we present an extension of CLUE to the case of rational dynamics and demonstrate its applicability on examples from literature. Our implementation is available in version 1.5 of CLUE at //github.com/pogudingleb/CLUE.

In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game in computational complexity $O(k^{14}\max\{a,b\}^{13})$, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). This is the only known provably efficient algorithm for the Colonel Blotto game with general parameters. In this work, we present the first known algorithm to compute $\epsilon$-approximate NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\epsilon^{-4} k^8 \max\{a,b\})$ for arbitrary settings of these parameters. Moreover, this algorithm computes approximate coarse correlated equilibrium strategies in the multiplayer Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \epsilon^{-4} k^8 n + \ell^2 \epsilon^{-2} k^3 n)$, where $n$ is the maximum troop count. Before this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria through a novel (to the author's knowledge) sampling technique with which it implicitly performs multiplicative weights update over the exponentially many strategies available to each player.

In this paper, we show several parameterized problems to be complete for the class XNLP: parameterized problems that can be solved with a non-deterministic algorithm that uses $f(k)\log n$ space and $f(k)n^c$ time, with $f$ a computable function, $n$ the input size, $k$ the parameter and $c$ a constant. The problems include Maximum Regular Induced Subgraph and Max Cut parameterized by linear clique-width, Capacitated (Red-Blue) Dominating Set parameterized by pathwidth, Odd Cycle Transversal parameterized by a new parameter we call logarithmic linear clique-width (defined as $k/\log n$ for an $n$-vertex graph of linear clique-width $k$), and Bipartite Bandwidth.

We present a novel class of locally conservative, entropy stable and well-balanced discontinuous Galerkin (DG) methods for the nonlinear shallow water equation with a non-flat bottom topography. The major novelty of our work is the use of velocity field as an independent solution unknown in the DG scheme, which is closely related to the entropy variable approach to entropy stable schemes for system of conservation laws proposed by Tadmor [22] back in 1986, where recall that velocity is part of the entropy variable for the shallow water equations. Due to the use of velocity as an independent solution unknown, no specific numerical quadrature rules are needed to achieve entropy stability of our scheme on general unstructured meshes in two dimensions. The proposed DG semi-discretization is then carefully combined with the classical explicit strong stability preserving Runge-Kutta (SSP-RK) time integrators [13] to yield a locally conservative, well-balanced, and positivity preserving fully discrete scheme. Here the positivity preservation property is enforced with the help of a simple scaling limiter. In the fully discrete scheme, we re-introduce discharge as an auxiliary unknown variable. In doing so, standard slope limiting procedures can be applied on the conservative variables (water height and discharge) without violating the local conservation property. Here we apply a characteristic-wise TVB limiter [5] on the conservative variables using the Fu-Shu troubled cell indicator [10] in each inner stage of the Runge-Kutta time stepping to suppress numerical oscillations.

The User Plane Function (UPF) aims to provide network services in the 3GPP 5G core network. These services need to be implemented on demand inexpensively with provable properties. Existing network dataplane programming languages are not up to the task. A new software paradigm is presented for the UPF. It is inspired by model checking a concurrent reactive system where conceptually each component of the system is modeled as an extended finite-state machine and their product is verified. We show how such a product can be computed for one example of a UPF and how its state invariants can be inferred, thereby eliminating the need to formally verify the product separately. Code can be generated from the product and regenerated on the fly to remain optimal for the probability distribution of network traffic the UPF must process.

A family of sets is $(p,q)$-intersecting if every nonempty subfamily of $p$ or fewer sets has at least $q$ elements in its total intersection. A family of sets has the $(p,q)$-Helly property if every nonempty $(p,q)$-intersecting subfamily has total intersection of cardinality at least $q$. The $(2,1)$-Helly property is the usual Helly property. A hypergraph is $(p,q)$-Helly if its edge family has the $(p,q)$-Helly property and hereditary $(p,q)$-Helly if each of its subhypergraphs has the $(p,q)$-Helly property. A graph is $(p,q)$-clique-Helly if the family of its maximal cliques has the $(p,q)$-the Helly property and hereditary $(p,q)$-clique-Helly if each of its induced subgraphs is $(p,q)$-clique-Helly. The classes of $(p,q)$-biclique-Helly and hereditary $(p,q)$-biclique-Helly graphs are defined analogously. We prove several characterizations of hereditary $(p,q)$-Helly hypergraphs, including one by minimal forbidden partial subhypergraphs. We give an improved time bound for the recognition of $(p,q)$-Helly hypergraphs for each fixed $q$ and show that the recognition of hereditary $(p,q)$-Helly hypergraphs can be solved in polynomial time if $p$ and $q$ are fixed but co-NP-complete if $p$ is part of the input. In addition, we generalize to $(p,q)$-clique-Helly graphs the characterization of $p$-clique-Helly graphs in terms of expansions and give different characterizations of hereditary $(p,q)$-clique-Helly graphs, including one by forbidden induced subgraphs. We give an improvement on the time bound for the recognition of $(p,q)$-clique-Helly graphs and prove that the recognition problem of hereditary $(p,q)$-clique-Helly graphs is polynomial-time solvable for $p$ and $q$ fixed but NP-hard if $p$ or $q$ is part of the input. Finally, we provide different characterizations, give recognition algorithms, and prove hardness results for (hereditary) $(p,q)$-biclique-Helly graphs.

Directed Acyclic Graphs (DAGs) provide a powerful framework to model causal relationships among variables in multivariate settings; in addition, through the do-calculus theory, they allow for the identification and estimation of causal effects between variables also from pure observational data. In this setting, the process of inferring the DAG structure from the data is referred to as causal structure learning or causal discovery. We introduce BCDAG, an R package for Bayesian causal discovery and causal effect estimation from Gaussian observational data, implementing the Markov chain Monte Carlo (MCMC) scheme proposed by Castelletti & Mascaro (2021). Our implementation scales efficiently with the number of observations and, whenever the DAGs are sufficiently sparse, with the number of variables in the dataset. The package also provides functions for convergence diagnostics and for visualizing and summarizing posterior inference. In this paper, we present the key features of the underlying methodology along with its implementation in BCDAG. We then illustrate the main functions and algorithms on both real and simulated datasets.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司