亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Under losses which are potentially heavy-tailed, we consider the task of minimizing sums of the loss mean and standard deviation, without trying to accurately estimate the variance. By modifying a technique for variance-free robust mean estimation to fit our problem setting, we derive a simple learning procedure which can be easily combined with standard gradient-based solvers to be used in traditional machine learning workflows. Empirically, we verify that our proposed approach, despite its simplicity, performs as well or better than even the best-performing candidates derived from alternative criteria such as CVaR or DRO risks on a variety of datasets.

相關內容

We consider the problem of estimating log-determinants of large, sparse, positive definite matrices. A key focus of our algorithm is to reduce computational cost, and it is based on sparse approximate inverses. The algorithm can be implemented to be adaptive, and it uses graph spline approximation to improve accuracy. We illustrate our approach on classes of large sparse matrices.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

In this paper, we aim to improve the percentage of packets meeting their deadline in discrete-time M/M/1 queues with infrequent monitoring. More specifically, we look into policies that only monitor the system (and subsequently take actions) after a packet arrival. We model the system as an MDP and provide the optimal policy for some special cases. Furthermore, we introduce a heuristic algorithm called "AB-n" for general deadlines. Finally, we provide numerical results demonstrating the desirable performance of "AB-n" policies.

In this work, we present an efficient approach to solve nonlinear high-contrast multiscale diffusion problems. We incorporate the explicit-implicit-null (EIN) method to separate the nonlinear term into a linear term and a damping term, and then utilise the implicit and explicit time marching scheme for the two parts respectively. Due to the multiscale property of the linear part, we further introduce a temporal partially explicit splitting scheme and construct suitable multiscale subspaces to speed up the computation. The approximated solution is splitted into these subspaces associated with different physics. The temporal splitting scheme employs implicit discretization in the subspace with small dimension that representing the high-contrast property and uses explicit discretization for the other subspace. We exploit the stability of the proposed scheme and give the condition for the choice of the linear diffusion coefficient. The convergence of the proposed method is provided. Several numerical tests are performed to show the efficiency and accuracy of the proposed approach.

For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom.

Homogeneous normalized random measures with independent increments (hNRMIs) represent a broad class of Bayesian nonparametric priors and thus are widely used. In this paper, we obtain the strong law of large numbers, the central limit theorem and the functional central limit theorem of hNRMIs when the concentration parameter $a$ approaches infinity. To quantify the convergence rate of the obtained central limit theorem, we further study the Berry-Esseen bound, which turns out to be of the form $O \left( \frac{1}{\sqrt{a}}\right)$. As an application of the central limit theorem, we present the functional delta method, which can be employed to obtain the limit of the quantile process of hNRMIs. As an illustration of the central limit theorems, we demonstrate the convergence numerically for the Dirichlet processes and the normalized inverse Gaussian processes with various choices of the concentration parameters.

In many communication contexts, the capabilities of the involved actors cannot be known beforehand, whether it is a cell, a plant, an insect, or even a life form unknown to Earth. Regardless of the recipient, the message space and time scale could be too fast, too slow, too large, or too small and may never be decoded. Therefore, it pays to devise a way to encode messages agnostic of space and time scales. We propose the use of fractal functions as self-executable infinite-frequency carriers for sending messages, given their properties of structural self-similarity and scale invariance. We call it `fractal messaging'. Starting from a spatial embedding, we introduce a framework for a space-time scale-free messaging approach to this challenge. When considering a space and time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded at several spatio-temporal scales. Hence, the core idea of the framework proposed herein is to encode a binary message as waves along infinitely many frequencies (in power-like distributions) and amplitudes, transmit such a message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a space-time-agnostic approach to messaging.

We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion. The solver is specially devised to optimize curved high-order meshes for high polynomial degrees with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment -- exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-$\text{iLDL}^{\text{T}}(0)$ preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix-vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix-vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

Deterministic chaos permits a precise notion of a "perfect measurement" as one that, when obtained repeatedly, captures all of the information created by the system's evolution with minimal redundancy. Finding an optimal measurement is challenging, and has generally required intimate knowledge of the dynamics in the few cases where it has been done. We establish an equivalence between a perfect measurement and a variant of the information bottleneck. As a consequence, we can employ machine learning to optimize measurement processes that efficiently extract information from trajectory data. We obtain approximately optimal measurements for multiple chaotic maps and lay the necessary groundwork for efficient information extraction from general time series.

北京阿比特科技有限公司