亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deterministic chaos permits a precise notion of a "perfect measurement" as one that, when obtained repeatedly, captures all of the information created by the system's evolution with minimal redundancy. Finding an optimal measurement is challenging, and has generally required intimate knowledge of the dynamics in the few cases where it has been done. We establish an equivalence between a perfect measurement and a variant of the information bottleneck. As a consequence, we can employ machine learning to optimize measurement processes that efficiently extract information from trajectory data. We obtain approximately optimal measurements for multiple chaotic maps and lay the necessary groundwork for efficient information extraction from general time series.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Analysis · Performer · 講稿 · motivation ·
2024 年 5 月 3 日

We present an approach for the efficient implementation of self-adjusting multi-rate Runge-Kutta methods and we extend the previously available stability analyses of these methods to the case of an arbitrary number of sub-steps for the active components. We propose a physically motivated model problem that can be used to assess the stability of different multi-rate versions of standard Runge-Kutta methods and the impact of different interpolation methods for the latent variables. Finally, we present the results of several numerical experiments, performed with implementations of the proposed methods in the framework of the \textit{OpenModelica} open-source modelling and simulation software, which demonstrate the efficiency gains deriving from the use of the proposed multi-rate approach for physical modelling problems with multiple time scales.

Electromagnetic (EM) body models designed to predict Radio-Frequency (RF) propagation are time-consuming methods which prevent their adoption in strict real-time computational imaging problems, such as human body localization and sensing. Physics-informed Generative Neural Network (GNN) models have been recently proposed to reproduce EM effects, namely to simulate or reconstruct missing data or samples by incorporating relevant EM principles and constraints. The paper discusses a Variational Auto-Encoder (VAE) model which is trained to reproduce the effects of human motions on the EM field and incorporate EM body diffraction principles. Proposed physics-informed generative neural network models are verified against both classical diffraction-based EM tools and full-wave EM body simulations.

We introduce an approach which allows detecting causal relationships between variables for which the time evolution is available. Causality is assessed by a variational scheme based on the Information Imbalance of distance ranks, a statistical test capable of inferring the relative information content of different distance measures. We test whether the predictability of a putative driven system Y can be improved by incorporating information from a potential driver system X, without explicitly modeling the underlying dynamics and without the need to compute probability densities of the dynamic variables. This framework makes causality detection possible even between high-dimensional systems where only few of the variables are known or measured. Benchmark tests on coupled chaotic dynamical systems demonstrate that our approach outperforms other model-free causality detection methods, successfully handling both unidirectional and bidirectional couplings. We also show that the method can be used to robustly detect causality in human electroencephalography data.

Linkage methods are among the most popular algorithms for hierarchical clustering. Despite their relevance the current knowledge regarding the quality of the clustering produced by these methods is limited. Here, we improve the currently available bounds on the maximum diameter of the clustering obtained by complete-link for metric spaces. One of our new bounds, in contrast to the existing ones, allows us to separate complete-link from single-link in terms of approximation for the diameter, which corroborates the common perception that the former is more suitable than the latter when the goal is producing compact clusters. We also show that our techniques can be employed to derive upper bounds on the cohesion of a class of linkage methods that includes the quite popular average-link.

Single-particle entangled states (SPES) can offer a more secure way of encoding and processing quantum information than their multi-particle counterparts. The SPES generated via a 2D alternate quantum-walk setup from initially separable states can be either 3-way or 2-way entangled. This letter shows that the generated genuine three-way and nonlocal two-way SPES can be used as cryptographic keys to securely encode two distinct messages simultaneously. We detail the message encryption-decryption steps and show the resilience of the 3-way and 2-way SPES-based cryptographic protocols against eavesdropper attacks like intercept-and-resend and man-in-the-middle. We also detail how these protocols can be experimentally realized using single photons, with the three degrees of freedom being OAM, path, and polarization. These have unparalleled security for quantum communication tasks. The ability to simultaneously encode two distinct messages using the generated SPES showcases the versatility and efficiency of the proposed cryptographic protocol. This capability could significantly improve the throughput of quantum communication systems.

The goal of multi-objective optimisation is to identify a collection of points which describe the best possible trade-offs between the multiple objectives. In order to solve this vector-valued optimisation problem, practitioners often appeal to the use of scalarisation functions in order to transform the multi-objective problem into a collection of single-objective problems. This set of scalarised problems can then be solved using traditional single-objective optimisation techniques. In this work, we formalise this convention into a general mathematical framework. We show how this strategy effectively recasts the original multi-objective optimisation problem into a single-objective optimisation problem defined over sets. An appropriate class of objective functions for this new problem are the R2 utilities, which are utility functions that are defined as a weighted integral over the scalarised optimisation problems. As part of our work, we show that these utilities are monotone and submodular set functions which can be optimised effectively using greedy optimisation algorithms. We then analyse the performance of these greedy algorithms both theoretically and empirically. Our analysis largely focusses on Bayesian optimisation, which is a popular probabilistic framework for black-box optimisation.

Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for scene recognition exhibit two limitations: 1) They typically model only one kind of spatial relationship among objects within scenes in an artificially predefined manner, with limited exploration of diverse spatial layouts. 2) They often overlook the differences in coexisting objects across different scenes, suppressing scene recognition performance. To overcome these limitations, we propose SpaCoNet, which simultaneously models Spatial relation and Co-occurrence of objects guided by semantic segmentation. Firstly, the Semantic Spatial Relation Module (SSRM) is constructed to model scene spatial features. With the help of semantic segmentation, this module decouples the spatial information from the scene image and thoroughly explores all spatial relationships among objects in an end-to-end manner. Secondly, both spatial features from the SSRM and deep features from the Image Feature Extraction Module are allocated to each object, so as to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features above, we design a Global-Local Dependency Module to explore the long-range co-occurrence among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method.

Purpose: Radiologists are tasked with visually scrutinizing large amounts of data produced by 3D volumetric imaging modalities. Small signals can go unnoticed during the 3d search because they are hard to detect in the visual periphery. Recent advances in machine learning and computer vision have led to effective computer-aided detection (CADe) support systems with the potential to mitigate perceptual errors. Approach: Sixteen non-expert observers searched through digital breast tomosynthesis (DBT) phantoms and single cross-sectional slices of the DBT phantoms. The 3D/2D searches occurred with and without a convolutional neural network (CNN)-based CADe support system. The model provided observers with bounding boxes superimposed on the image stimuli while they looked for a small microcalcification signal and a large mass signal. Eye gaze positions were recorded and correlated with changes in the area under the ROC curve (AUC). Results: The CNN-CADe improved the 3D search for the small microcalcification signal (delta AUC = 0.098, p = 0.0002) and the 2D search for the large mass signal (delta AUC = 0.076, p = 0.002). The CNN-CADe benefit in 3D for the small signal was markedly greater than in 2D (delta delta AUC = 0.066, p = 0.035). Analysis of individual differences suggests that those who explored the least with eye movements benefited the most from the CNN-CADe (r = -0.528, p = 0.036). However, for the large signal, the 2D benefit was not significantly greater than the 3D benefit (delta delta AUC = 0.033, p = 0.133). Conclusion: The CNN-CADe brings unique performance benefits to the 3D (vs. 2D) search of small signals by reducing errors caused by the under-exploration of the volumetric data.

Contraction coefficients give a quantitative strengthening of the data processing inequality. As such, they have many natural applications whenever closer analysis of information processing is required. However, it is often challenging to calculate these coefficients. As a remedy we discuss a quantum generalization of Doeblin coefficients. These give an efficiently computable upper bound on many contraction coefficients. We prove several properties and discuss generalizations and applications. In particular, we give additional stronger bounds for PPT channels and introduce reverse Doeblin coefficients that bound certain expansion coefficients.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司