亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph Convolutional Networks (GCNs) can capture non-Euclidean spatial dependence between different brain regions. The graph pooling operator, a crucial element of GCNs, enhances the representation learning capability and facilitates the acquisition of abnormal brain maps. However, most existing research designs graph pooling operators solely from the perspective of nodes while disregarding the original edge features, in a way that not only confines graph pooling application scenarios, but also diminishes its ability to capture critical substructures. To design a graph clustering pooling operator that is tailored to dominant edge features, we proposed the edge-aware hard clustering graph pool (EHCPool) and redefined the graph clustering process. Specifically, the 'Edge-to-node' criterion was proposed to evaluate the significance of both edge and node features. Guided by edge scores, we designed a revolutionary Iteration n-top strategy, aimed at adaptively learning sparse hard clustering assignments for graphs. Subsequently, a novel N-E Aggregation strategy is introduced to aggregate node and edge information in each independent subgraph. Extensive experiments on the multi-site public datasets demonstrate the superiority and robustness of the proposed model. More notably, EHCPool has the potential to probe different types of dysfunctional brain networks from a data-driven perspective. Core code is at: //github.com/swfen/EHCPool.

相關內容

We consider a missing data problem in the context of automatic segmentation methods for Magnetic Resonance Imaging (MRI) brain scans. Usually, automated MRI scan segmentation is based on multiple scans (e.g., T1-weighted, T2-weighted, T1CE, FLAIR). However, quite often a scan is blurry, missing or otherwise unusable. We investigate the question whether a missing scan can be synthesized. We exemplify that this is in principle possible by synthesizing a T2-weighted scan from a given T1-weighted scan. Our first aim is to compute a picture that resembles the missing scan closely, measured by average mean squared error (MSE). We develop/use several methods for this, including a random baseline approach, a clustering-based method and pixel-to-pixel translation method by (Pix2Pix) which is based on conditional GANs. The lowest MSE is achieved by our clustering-based method. Our second aim is to compare the methods with respect to the affect that using the synthesized scan has on the segmentation process. For this, we use a DeepMedic model trained with the four input scan modalities named above. We replace the T2-weighted scan by the synthesized picture and evaluate the segmentations with respect to the tumor identification, using Dice scores as numerical evaluation. The evaluation shows that the segmentation works well with synthesized scans (in particular, with Pix2Pix methods) in many cases.

In recent years, pre-trained large language models (LLMs) have achieved tremendous success in the field of Natural Language Processing (NLP). Prior studies have primarily focused on general and generic domains, with relatively less research on specialized LLMs in the medical field. The specialization and high accuracy requirements for diagnosis in the medical field, as well as the challenges in collecting large-scale data, have constrained the application and development of LLMs in medical scenarios. In the field of ophthalmology, clinical diagnosis mainly relies on doctors' interpretation of reports and making diagnostic decisions. In order to take advantage of LLMs to provide decision support for doctors, we collected three modalities of ophthalmic report data and fine-tuned the LLaMA2 model, successfully constructing an LLM termed the "Ophtha-LLaMA2" specifically tailored for ophthalmic disease diagnosis. Inference test results show that even with a smaller fine-tuning dataset, Ophtha-LLaMA2 performs significantly better in ophthalmic diagnosis compared to other LLMs. It demonstrates that the Ophtha-LLaMA2 exhibits satisfying accuracy and efficiency in ophthalmic disease diagnosis, making it a valuable tool for ophthalmologists to provide improved diagnostic support for patients. This research provides a useful reference for the application of LLMs in the field of ophthalmology, while showcasing the immense potential and prospects in this domain.

Large Language Models (LLMs) presents significant priority in text understanding and generation. However, LLMs suffer from the risk of generating harmful contents especially while being employed to applications. There are several black-box attack methods, such as Prompt Attack, which can change the behaviour of LLMs and induce LLMs to generate unexpected answers with harmful contents. Researchers are interested in Prompt Attack and Defense with LLMs, while there is no publicly available dataset with high successful attacking rate to evaluate the abilities of defending prompt attack. In this paper, we introduce a pipeline to construct high-quality prompt attack samples, along with a Chinese prompt attack dataset called CPAD. Our prompts aim to induce LLMs to generate unexpected outputs with several carefully designed prompt attack templates and widely concerned attacking contents. Different from previous datasets involving safety estimation, we construct the prompts considering three dimensions: contents, attacking methods and goals. Especially, the attacking goals indicate the behaviour expected after successfully attacking the LLMs, thus the responses can be easily evaluated and analysed. We run several popular Chinese LLMs on our dataset, and the results show that our prompts are significantly harmful to LLMs, with around 70% attack success rate to GPT-3.5. CPAD is publicly available at //github.com/liuchengyuan123/CPAD.

We address the problem of parameter estimation for degenerate diffusion processes defined via the solution of Stochastic Differential Equations (SDEs) with diffusion matrix that is not full-rank. For this class of hypo-elliptic diffusions recent works have proposed contrast estimators that are asymptotically normal, provided that the step-size in-between observations $\Delta=\Delta_n$ and their total number $n$ satisfy $n \to \infty$, $n \Delta_n \to \infty$, $\Delta_n \to 0$, and additionally $\Delta_n = o (n^{-1/2})$. This latter restriction places a requirement for a so-called `rapidly increasing experimental design'. In this paper, we overcome this limitation and develop a general contrast estimator satisfying asymptotic normality under the weaker design condition $\Delta_n = o(n^{-1/p})$ for general $p \ge 2$. Such a result has been obtained for elliptic SDEs in the literature, but its derivation in a hypo-elliptic setting is highly non-trivial. We provide numerical results to illustrate the advantages of the developed theory.

Adaptive importance sampling (AIS) methods provide a useful alternative to Markov Chain Monte Carlo (MCMC) algorithms for performing inference of intractable distributions. Population Monte Carlo (PMC) algorithms constitute a family of AIS approaches which adapt the proposal distributions iteratively to improve the approximation of the target distribution. Recent work in this area primarily focuses on ameliorating the proposal adaptation procedure for high-dimensional applications. However, most of the AIS algorithms use simple proposal distributions for sampling, which might be inadequate in exploring target distributions with intricate geometries. In this work, we construct expressive proposal distributions in the AIS framework using normalizing flow, an appealing approach for modeling complex distributions. We use an iterative parameter update rule to enhance the approximation of the target distribution. Numerical experiments show that in high-dimensional settings, the proposed algorithm offers significantly improved performance compared to the existing techniques.

Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks, showing amazing emergent abilities in recent studies, such as writing poems based on an image. However, it is difficult for these case studies to fully reflect the performance of MLLM, lacking a comprehensive evaluation. In this paper, we fill in this blank, presenting the first comprehensive MLLM Evaluation benchmark MME. It measures both perception and cognition abilities on a total of 14 subtasks. In order to avoid data leakage that may arise from direct use of public datasets for evaluation, the annotations of instruction-answer pairs are all manually designed. The concise instruction design allows us to fairly compare MLLMs, instead of struggling in prompt engineering. Besides, with such an instruction, we can also easily carry out quantitative statistics. A total of 30 advanced MLLMs are comprehensively evaluated on our MME, which not only suggests that existing MLLMs still have a large room for improvement, but also reveals the potential directions for the subsequent model optimization.

Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司