The convex body chasing problem, introduced by Friedman and Linial, is a competitive analysis problem on any normed vector space. In convex body chasing, for each timestep $t\in\mathbb N$, a convex body $K_t\subseteq \mathbb R^d$ is given as a request, and the player picks a point $x_t\in K_t$. The player aims to ensure that the total distance $\sum_{t=0}^{T-1}||x_t-x_{t+1}||$ is within a bounded ratio of the smallest possible offline solution. In this work, we consider the nested version of the problem, in which the sequence $(K_t)$ must be decreasing. For Euclidean spaces, we consider a memoryless algorithm which moves to the so-called Steiner point, and show that in a certain sense it is exactly optimal among memoryless algorithms. For general finite dimensional normed spaces, we combine the Steiner point and our recent previous algorithm to obtain a new algorithm which is nearly optimal for all $\ell^p_d$ spaces with $p\geq 1$, closing a polynomial gap.
Motivated by the serious problem that hospitals in rural areas suffer from a shortage of residents, we study the Hospitals/Residents model in which hospitals are associated with lower quotas and the objective is to satisfy them as much as possible. When preference lists are strict, the number of residents assigned to each hospital is the same in any stable matching due to the well-known rural hospitals theorem; thus there is no room for algorithmic interventions. However, when ties are introduced in preference lists, this is not the case because the number of residents may vary over stable matchings. In this paper, we formulate an optimization problem that asks to find a stable matching with the maximum total satisfaction ratio for lower quotas. We first investigate how the total satisfaction ratio varies over choices of stable matchings in four natural scenarios. We provide exact values of these maximum gaps in all scenarios. Subsequently, we propose a strategy-proof approximation algorithm for our problem; in one scenario it solves the problem optimally, and in the other three scenarios, which are NP-hard, it yields a better approximation factor than a naive tie-breaking method. Finally, we show inapproximability results for the above-mentioned three NP-hard scenarios.
This paper studies the problem of federated learning (FL) in the absence of a trustworthy server/clients. In this setting, each client needs to ensure the privacy of its own data without relying on the server or other clients. We study local differential privacy (LDP) and provide tight upper and lower bounds that establish the minimax optimal rates (up to logarithms) for LDP convex/strongly convex federated stochastic optimization. Our rates match the optimal statistical rates in certain practical parameter regimes ("privacy for free"). Second, we develop a novel time-varying noisy SGD algorithm, leading to the first non-trivial LDP risk bounds for FL with non-i.i.d. clients. Third, we consider the special case where each client's loss function is empirical and develop an accelerated LDP FL algorithm to improve communication complexity compared to existing works. We also provide matching lower bounds, establishing the optimality of our algorithm for convex/strongly convex settings. Fourth, with a secure shuffler to anonymize client reports (but without a trusted server), our algorithm attains the optimal central DP rates for stochastic convex/strongly convex optimization, thereby achieving optimality in the local and central models simultaneously. Our upper bounds quantify the role of network communication reliability in performance.
This paper addresses the problem of learning an equilibrium efficiently in general-sum Markov games through decentralized multi-agent reinforcement learning. Given the fundamental difficulty of calculating a Nash equilibrium (NE), we instead aim at finding a coarse correlated equilibrium (CCE), a solution concept that generalizes NE by allowing possible correlations among the agents' strategies. We propose an algorithm in which each agent independently runs optimistic V-learning (a variant of Q-learning) to efficiently explore the unknown environment, while using a stabilized online mirror descent (OMD) subroutine for policy updates. We show that the agents can find an $\epsilon$-approximate CCE in at most $\widetilde{O}( H^6S A /\epsilon^2)$ episodes, where $S$ is the number of states, $A$ is the size of the largest individual action space, and $H$ is the length of an episode. This appears to be the first sample complexity result for learning in generic general-sum Markov games. Our results rely on a novel investigation of an anytime high-probability regret bound for OMD with a dynamic learning rate and weighted regret, which would be of independent interest. One key feature of our algorithm is that it is fully \emph{decentralized}, in the sense that each agent has access to only its local information, and is completely oblivious to the presence of others. This way, our algorithm can readily scale up to an arbitrary number of agents, without suffering from the exponential dependence on the number of agents.
We investigate two perturbation approaches to overcome conservatism that optimism based algorithms chronically suffer from in practice. The first approach replaces optimism with a simple randomization when using confidence sets. The second one adds random perturbations to its current estimate before maximizing the expected reward. For non-stationary linear bandits, where each action is associated with a $d$-dimensional feature and the unknown parameter is time-varying with total variation $B_T$, we propose two randomized algorithms, Discounted Randomized LinUCB (D-RandLinUCB) and Discounted Linear Thompson Sampling (D-LinTS) via the two perturbation approaches. We highlight the statistical optimality versus computational efficiency trade-off between them in that the former asymptotically achieves the optimal dynamic regret $\tilde{O}(d^{7/8} B_T^{1/4}T^{3/4})$, but the latter is oracle-efficient with an extra logarithmic factor in the number of arms compared to minimax-optimal dynamic regret. In a simulation study, both algorithms show outstanding performance in tackling conservatism issue that Discounted LinUCB struggles with.
We introduce an evolutionary algorithm called recombinator-$k$-means for optimizing the highly non-convex kmeans problem. Its defining feature is that its crossover step involves all the members of the current generation, stochastically recombining them with a repurposed variant of the $k$-means++ seeding algorithm. The recombination also uses a reweighting mechanism that realizes a progressively sharper stochastic selection policy and ensures that the population eventually coalesces into a single solution. We compare this scheme with state-of-the-art alternative, a more standard genetic algorithm with deterministic pairwise-nearest-neighbor crossover and an elitist selection policy, of which we also provide an augmented and efficient implementation. Extensive tests on large and challenging datasets (both synthetic and real-word) show that for fixed population sizes recombinator-$k$-means is generally superior in terms of the optimization objective, at the cost of a more expensive crossover step. When adjusting the population sizes of the two algorithms to match their running times, we find that for short times the (augmented) pairwise-nearest-neighbor method is always superior, while at longer times recombinator-$k$-means will match it and, on the most difficult examples, take over. We conclude that the reweighted whole-population recombination is more costly, but generally better at escaping local minima. Moreover, it is algorithmically simpler and more general (it could be applied even to $k$-medians or $k$-medoids, for example). Our implementations are publicly available.
Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ and $\mathbf{y} = (y_1, y_2, \ldots, y_n)$, respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing $\mathbf{y}$ from $\mathbf{x}$, where each $y_j, j = 1, 2, \ldots, n$ is computed via a binary tree with leaves $\mathbf{x}$ excluding $x_j$. We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is $3n - 6$, and if a structure has such complexity, its minimum latency is $\delta + \lceil \log(n-2^{\delta}) \rceil$ with $\delta = \lfloor \log(n/2) \rfloor$, where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is $\lceil \log(n-1) \rceil$, and if a structure has such latency, its minimum complexity is $n \log(n-1)$ when $n-1$ is a power of two. Third, given $(n, \tau)$ with $\tau \geq \lceil \log(n-1) \rceil$, we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most $\tau$. Our construction method runs in $O(n^3 \log^2(n))$ time, and the obtained structure has complexity at most (generally much smaller than) $n \lceil \log(n) \rceil - 2$.
We classify tensors with maximal and next to maximal dimensional symmetry groups under a natural genericity assumption (1-genericity), in dimensions greater than 7. In other words, we classify minimal dimensional orbits in the space of (m,m,m) tensors assuming 1-genericity. Our study uncovers new tensors with striking geometry. This paper was motivated by Strassen's laser method for bounding the exponent of matrix multiplication. The best known tensor for the laser method is the large Coppersmith-Winograd tensor, and our study began with the observation that it has a large symmetry group, of dimension m^2/2 +m/2. We show that in odd dimensions, this is the largest possible for a 1-generic tensor, but in even dimensions we exhibit a tensor with a larger dimensional symmetry group. In the course of the proof, we classify nondegenerate bilinear forms with large dimensional stabilizers, which may be of interest in its own right.
Multi-agent reinforcement learning has made substantial empirical progresses in solving games with a large number of players. However, theoretically, the best known sample complexity for finding a Nash equilibrium in general-sum games scales exponentially in the number of players due to the size of the joint action space, and there is a matching exponential lower bound. This paper investigates what learning goals admit better sample complexities in the setting of $m$-player general-sum Markov games with $H$ steps, $S$ states, and $A_i$ actions per player. First, we design algorithms for learning an $\epsilon$-Coarse Correlated Equilibrium (CCE) in $\widetilde{\mathcal{O}}(H^5S\max_{i\le m} A_i / \epsilon^2)$ episodes, and an $\epsilon$-Correlated Equilibrium (CE) in $\widetilde{\mathcal{O}}(H^6S\max_{i\le m} A_i^2 / \epsilon^2)$ episodes. This is the first line of results for learning CCE and CE with sample complexities polynomial in $\max_{i\le m} A_i$. Our algorithm for learning CE integrates an adversarial bandit subroutine which minimizes a weighted swap regret, along with several novel designs in the outer loop. Second, we consider the important special case of Markov Potential Games, and design an algorithm that learns an $\epsilon$-approximate Nash equilibrium within $\widetilde{\mathcal{O}}(S\sum_{i\le m} A_i / \epsilon^3)$ episodes (when only highlighting the dependence on $S$, $A_i$, and $\epsilon$), which only depends linearly in $\sum_{i\le m} A_i$ and significantly improves over the best known algorithm in the $\epsilon$ dependence. Overall, our results shed light on what equilibria or structural assumptions on the game may enable sample-efficient learning with many players.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.