亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We classify tensors with maximal and next to maximal dimensional symmetry groups under a natural genericity assumption (1-genericity), in dimensions greater than 7. In other words, we classify minimal dimensional orbits in the space of (m,m,m) tensors assuming 1-genericity. Our study uncovers new tensors with striking geometry. This paper was motivated by Strassen's laser method for bounding the exponent of matrix multiplication. The best known tensor for the laser method is the large Coppersmith-Winograd tensor, and our study began with the observation that it has a large symmetry group, of dimension m^2/2 +m/2. We show that in odd dimensions, this is the largest possible for a 1-generic tensor, but in even dimensions we exhibit a tensor with a larger dimensional symmetry group. In the course of the proof, we classify nondegenerate bilinear forms with large dimensional stabilizers, which may be of interest in its own right.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 近似 · Networking · 估計/估計量 · 維數災難 ·
2021 年 12 月 2 日

This paper is concerned with convergence estimates for fully discrete tree tensor network approximations of high-dimensional functions from several model classes. For functions having standard or mixed Sobolev regularity, new estimates generalizing and refining known results are obtained, based on notions of linear widths of multivariate functions. In the main results of this paper, such techniques are applied to classes of functions with compositional structure, which are known to be particularly suitable for approximation by deep neural networks. As shown here, such functions can also be approximated by tree tensor networks without a curse of dimensionality -- however, subject to certain conditions, in particular on the depth of the underlying tree. In addition, a constructive encoding of compositional functions in tree tensor networks is given.

We study the complexity of optimizing highly smooth convex functions. For a positive integer $p$, we want to find an $\epsilon$-approximate minimum of a convex function $f$, given oracle access to the function and its first $p$ derivatives, assuming that the $p$th derivative of $f$ is Lipschitz. Recently, three independent research groups (Jiang et al., PLMR 2019; Gasnikov et al., PLMR 2019; Bubeck et al., PLMR 2019) developed a new algorithm that solves this problem with $\tilde{O}(1/\epsilon^{\frac{2}{3p+1}})$ oracle calls for constant $p$. This is known to be optimal (up to log factors) for deterministic algorithms, but known lower bounds for randomized algorithms do not match this bound. We prove a new lower bound that matches this bound (up to log factors), and holds not only for randomized algorithms, but also for quantum algorithms.

We introduce a new class of estimators for the linear response of steady states of stochastic dynamics. We generalize the likelihood ratio approach and formulate the linear response as a product of two martingales, hence the name "martingale product estimators". We present a systematic derivation of the martingale product estimator, and show how to construct such estimator so its bias is consistent with the weak order of the numerical scheme that approximates the underlying stochastic differential equation. Motivated by the estimation of transport properties in molecular systems, we present a rigorous numerical analysis of the bias and variance for these new estimators in the case of Langevin dynamics. We prove that the variance is uniformly bounded in time and derive a specific form of the estimator for second-order splitting schemes for Langevin dynamics. For comparison, we also study the bias and variance of a Green-Kubo estimator, motivated, in part, by its variance growing linearly in time. Presented analysis shows that the new martingale product estimators, having uniformly bounded variance in time, offer a competitive alternative to the traditional Green-Kubo estimator. We compare on illustrative numerical tests the new estimators with results obtained by the Green-Kubo method.

The Sinc-Nystr\"{o}m method is a high-order numerical method based on Sinc basis functions for discretizing evolutionary differential equations in time. But in this method we have to solve all the time steps in one-shot (i.e. all-at-once), which results in a large-scale nonsymmetric dense system that is expensive to handle. In this paper, we propose and analyze preconditioner for such dense system arising from both the parabolic and hyperbolic PDEs. The proposed preconditioner is a low-rank perturbation of the original matrix and has two advantages. First, we show that the eigenvalues of the preconditioned system are highly clustered with some uniform bounds which are independent of the mesh parameters. Second, the preconditioner can be used parallel for all the Sinc time points via a block diagonalization procedure. Such a parallel potential owes to the fact that the eigenvector matrix of the diagonalization is well conditioned. In particular, we show that the condition number of the eigenvector matrix only mildly grows as the number of Sinc time points increases, and thus the roundoff error arising from the diagonalization procedure is controllable. The effectiveness of our proposed PinT preconditioners is verified by the observed mesh-independent convergence rates of the preconditioned GMRES in reported numerical examples.

In Chen and Zhou 2021, they consider an inference problem for an Ornstein-Uhlenbeck process driven by a general one-dimensional centered Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. The starting point of this paper is a new relationship between the inner product of $\mathfrak{H}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. Based on this relationship and some known estimation of the inner product of $\mathfrak{H}_1$, we prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Ess\'{e}en bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter constructed from the continuous observations.

We aim to make inferences about a smooth, finite-dimensional parameter by fusing data from multiple sources together. Previous works have studied the estimation of a variety of parameters in similar data fusion settings, including in the estimation of the average treatment effect, optimal treatment rule, and average reward, with the majority of them merging one historical data source with covariates, actions, and rewards and one data source of the same covariates. In this work, we consider the general case where one or more data sources align with each part of the distribution of the target population, for example, the conditional distribution of the reward given actions and covariates. We describe potential gains in efficiency that can arise from fusing these data sources together in a single analysis, which we characterize by a reduction in the semiparametric efficiency bound. We also provide a general means to construct estimators that achieve these bounds. In numerical experiments, we show marked improvements in efficiency from using our proposed estimators rather than their natural alternatives. Finally, we illustrate the magnitude of efficiency gains that can be realized in vaccine immunogenicity studies by fusing data from two HIV vaccine trials.

We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This gives rise to a new definition of disentanglement, and to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司