亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent popularity of Wordle has revived interest in guessing games. We develop a general method for finding optimal strategies for guessing games while avoiding an exhaustive search. Our main contributions are several theorems that build towards a general theory to prove the optimality of a strategy for a guessing game. This work is developed to apply to any guessing game, but we use Wordle as an example to present concrete results.

相關內容

Online computation is a concept to model uncertainty where not all information on a problem instance is known in advance. An online algorithm receives requests which reveal the instance piecewise and has to respond with irrevocable decisions. Often, an adversary is assumed that constructs the instance knowing the deterministic behavior of the algorithm. Thus, the adversary is able to tailor the input to any online algorithm. From a game theoretical point of view, the adversary and the online algorithm are players in an asymmetric two-player game. To overcome this asymmetry, the online algorithm is equipped with an isomorphic copy of the graph, which is referred to as unlabeled map. By applying the game theoretical perspective on online graph problems, where the solution is a subset of the vertices, we analyze the complexity of these online vertex subset games. For this, we introduce a framework for reducing online vertex subset games from TQBF. This framework is based on gadget reductions from 3-SATISFIABILITY to the corresponding offline problem. We further identify a set of rules for extending the 3-SATISFIABILITY-reduction and provide schemes for additional gadgets which assure that these rules are fulfilled. By extending the gadget reduction of the vertex subset problem with these additional gadgets, we obtain a reduction for the corresponding online vertex subset game. At last, we provide example reductions for online vertex subset games based on VERTEX COVER, INDEPENDENT SET, and DOMINATING SET, proving that they are PSPACE-complete. Thus, this paper establishes that the online version with a map of NP-complete vertex subset problems form a large class of PSPACE-complete problems.

Synthetic data generation has been a growing area of research in recent years. However, its potential applications in serious games have not been thoroughly explored. Advances in this field could anticipate data modelling and analysis, as well as speed up the development process. To try to fill this gap in the literature, we propose a simulator architecture for generating probabilistic synthetic data for serious games based on interactive narratives. This architecture is designed to be generic and modular so that it can be used by other researchers on similar problems. To simulate the interaction of synthetic players with questions, we use a cognitive testing model based on the Item Response Theory framework. We also show how probabilistic graphical models (in particular Bayesian networks) can be used to introduce expert knowledge and external data into the simulation. Finally, we apply the proposed architecture and methods in a use case of a serious game focused on cyberbullying. We perform Bayesian inference experiments using a hierarchical model to demonstrate the identifiability and robustness of the generated data.

Despite their immense success in numerous fields, machine and deep learning systems have not yet been able to firmly establish themselves in mission-critical applications in healthcare. One of the main reasons lies in the fact that when models are presented with previously unseen, Out-of-Distribution samples, their performance deteriorates significantly. This is known as the Domain Generalization (DG) problem. Our objective in this work is to propose a benchmark for evaluating DG algorithms, in addition to introducing a novel architecture for tackling DG in biosignal classification. In this paper, we describe the Domain Generalization problem for biosignals, focusing on electrocardiograms (ECG) and electroencephalograms (EEG) and propose and implement an open-source biosignal DG evaluation benchmark. Furthermore, we adapt state-of-the-art DG algorithms from computer vision to the problem of 1D biosignal classification and evaluate their effectiveness. Finally, we also introduce a novel neural network architecture that leverages multi-layer representations for improved model generalizability. By implementing the above DG setup we are able to experimentally demonstrate the presence of the DG problem in ECG and EEG datasets. In addition, our proposed model demonstrates improved effectiveness compared to the baseline algorithms, exceeding the state-of-the-art in both datasets. Recognizing the significance of the distribution shift present in biosignal datasets, the presented benchmark aims at urging further research into the field of biomedical DG by simplifying the evaluation process of proposed algorithms. To our knowledge, this is the first attempt at developing an open-source framework for evaluating ECG and EEG DG algorithms.

Recent research has proposed approaches that modify speech to defend against gender inference attacks. The goal of these protection algorithms is to control the availability of information about a speaker's gender, a privacy-sensitive attribute. Currently, the common practice for developing and testing gender protection algorithms is "neural-on-neural", i.e., perturbations are generated and tested with a neural network. In this paper, we propose to go beyond this practice to strengthen the study of gender protection. First, we demonstrate the importance of testing gender inference attacks that are based on speech features historically developed by speech scientists, alongside the conventionally used neural classifiers. Next, we argue that researchers should use speech features to gain insight into how protective modifications change the speech signal. Finally, we point out that gender-protection algorithms should be compared with novel "vocal adversaries", human-executed voice adaptations, in order to improve interpretability and enable before-the-mic protection.

Quantifying treatment effect heterogeneity is a crucial task in many areas of causal inference, e.g. optimal treatment allocation and estimation of subgroup effects. We study the problem of estimating the level sets of the conditional average treatment effect (CATE), identified under the no-unmeasured-confounders assumption. Given a user-specified threshold, the goal is to estimate the set of all units for whom the treatment effect exceeds that threshold. For example, if the cutoff is zero, the estimand is the set of all units who would benefit from receiving treatment. Assigning treatment just to this set represents the optimal treatment rule that maximises the mean population outcome. Similarly, cutoffs greater than zero represent optimal rules under resource constraints. The level set estimator that we study follows the plug-in principle and consists of simply thresholding a good estimator of the CATE. While many CATE estimators have been recently proposed and analysed, how their properties relate to those of the corresponding level set estimators remains unclear. Our first goal is thus to fill this gap by deriving the asymptotic properties of level set estimators depending on which estimator of the CATE is used. Next, we identify a minimax optimal estimator in a model where the CATE, the propensity score and the outcome model are Holder-smooth of varying orders. We consider data generating processes that satisfy a margin condition governing the probability of observing units for whom the CATE is close to the threshold. We investigate the performance of the estimators in simulations and illustrate our methods on a dataset used to study the effects on mortality of laparoscopic vs open surgery in the treatment of various conditions of the colon.

The multivariate Hawkes process is a past-dependent point process used to model the relationship of event occurrences between different phenomena.Although the Hawkes process was originally introduced to describe excitation effects, which means that one event increases the chances of another occurring, there has been a growing interest in modelling the opposite effect, known as inhibition.In this paper, we focus on how to infer the parameters of a multidimensional exponential Hawkes process with both excitation and inhibition effects. Our first result is to prove the identifiability of this model under a few sufficient assumptions. Then we propose a maximum likelihood approach to estimate the interaction functions, which is, to the best of our knowledge, the first exact inference procedure in the frequentist framework.Our method includes a variable selection step in order to recover the support of interactions and therefore to infer the connectivity graph.A benefit of our method is to provide an explicit computation of the log-likelihood, which enables in addition to perform a goodness-of-fit test for assessing the quality of estimations.We compare our method to standard approaches, which were developed in the linear framework and are not specifically designed for handling inhibiting effects.We show that the proposed estimator performs better on synthetic data than alternative approaches. We also illustrate the application of our procedure to a neuronal activity dataset, which highlights the presence of both exciting and inhibiting effects between neurons.

The majority of machine learning methods can be regarded as the minimization of an unavailable risk function. To optimize the latter, given samples provided in a streaming fashion, we define a general stochastic Newton algorithm and its weighted average version. In several use cases, both implementations will be shown not to require the inversion of a Hessian estimate at each iteration, but a direct update of the estimate of the inverse Hessian instead will be favored. This generalizes a trick introduced in [2] for the specific case of logistic regression, by directly updating the estimate of the inverse Hessian. Under mild assumptions such as local strong convexity at the optimum, we establish almost sure convergences and rates of convergence of the algorithms, as well as central limit theorems for the constructed parameter estimates. The unified framework considered in this paper covers the case of linear, logistic or softmax regressions to name a few. Numerical experiments on simulated data give the empirical evidence of the pertinence of the proposed methods, which outperform popular competitors particularly in case of bad initializa-tions.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

We employ a toolset -- dubbed Dr. Frankenstein -- to analyse the similarity of representations in deep neural networks. With this toolset, we aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer. We demonstrate that the inner representations emerging in deep convolutional neural networks with the same architecture but different initializations can be matched with a surprisingly high degree of accuracy even with a single, affine stitching layer. We choose the stitching layer from several possible classes of linear transformations and investigate their performance and properties. The task of matching representations is closely related to notions of similarity. Using this toolset, we also provide a novel viewpoint on the current line of research regarding similarity indices of neural network representations: the perspective of the performance on a task.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

北京阿比特科技有限公司