亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, the transformer has established itself as a workhorse in many applications ranging from natural language processing to reinforcement learning. Similarly, Bayesian deep learning has become the gold-standard for uncertainty estimation in safety-critical applications, where robustness and calibration are crucial. Surprisingly, no successful attempts to improve transformer models in terms of predictive uncertainty using Bayesian inference exist. In this work, we study this curiously underpopulated area of Bayesian transformers. We find that weight-space inference in transformers does not work well, regardless of the approximate posterior. We also find that the prior is at least partially at fault, but that it is very hard to find well-specified weight priors for these models. We hypothesize that these problems stem from the complexity of obtaining a meaningful mapping from weight-space to function-space distributions in the transformer. Therefore, moving closer to function-space, we propose a novel method based on the implicit reparameterization of the Dirichlet distribution to apply variational inference directly to the attention weights. We find that this proposed method performs competitively with our baselines.

相關內容

We present Mobile-Former, a parallel design of MobileNet and transformer with a two-way bridge in between. This structure leverages the advantages of MobileNet at local processing and transformer at global interaction. And the bridge enables bidirectional fusion of local and global features. Different from recent works on vision transformer, the transformer in Mobile-Former contains very few tokens (e.g. 6 or fewer tokens) that are randomly initialized to learn global priors, resulting in low computational cost. Combining with the proposed light-weight cross attention to model the bridge, Mobile-Former is not only computationally efficient, but also has more representation power. It outperforms MobileNetV3 at low FLOP regime from 25M to 500M FLOPs on ImageNet classification. For instance, Mobile-Former achieves 77.9\% top-1 accuracy at 294M FLOPs, gaining 1.3\% over MobileNetV3 but saving 17\% of computations. When transferring to object detection, Mobile-Former outperforms MobileNetV3 by 8.6 AP in RetinaNet framework. Furthermore, we build an efficient end-to-end detector by replacing backbone, encoder and decoder in DETR with Mobile-Former, which outperforms DETR by 1.1 AP but saves 52\% of computational cost and 36\% of parameters.

Estimating free energy differences, an important problem in computational drug discovery and in a wide range of other application areas, commonly involves a computationally intensive process of sampling a family of high-dimensional probability distributions and a procedure for computing estimates based on those samples. The variance of the free energy estimate of interest typically depends strongly on how the total computational resources available for sampling are divided among the distributions, but determining an efficient allocation is difficult without sampling the distributions. Here we introduce the Times Square sampling algorithm, a novel on-the-fly estimation method that dynamically allocates resources in such a way as to significantly accelerate the estimation of free energies and other observables, while providing rigorous convergence guarantees for the estimators. We also show that it is possible, surprisingly, for on-the-fly free energy estimation to achieve lower asymptotic variance than the maximum-likelihood estimator MBAR, raising the prospect that on-the-fly estimation could reduce variance in a variety of other statistical applications.

The recent success of neural networks enables a better interpretation of 3D point clouds, but processing a large-scale 3D scene remains a challenging problem. Most current approaches divide a large-scale scene into small regions and combine the local predictions together. However, this scheme inevitably involves additional stages for pre- and post-processing and may also degrade the final output due to predictions in a local perspective. This paper introduces Fast Point Transformer that consists of a new lightweight self-attention layer. Our approach encodes continuous 3D coordinates, and the voxel hashing-based architecture boosts computational efficiency. The proposed method is demonstrated with 3D semantic segmentation and 3D detection. The accuracy of our approach is competitive to the best voxel-based method, and our network achieves 136 times faster inference time than the state-of-the-art, Point Transformer, with a reasonable accuracy trade-off.

Discrete undirected graphical models, also known as Markov Random Fields (MRFs), can flexibly encode probabilistic interactions of multiple variables, and have enjoyed successful applications to a wide range of problems. However, a well-known yet little studied limitation of discrete MRFs is that they cannot capture context-specific independence (CSI). Existing methods require carefully developed theories and purpose-built inference methods, which limit their applications to only small-scale problems. In this paper, we propose the Markov Attention Model (MAM), a family of discrete MRFs that incorporates an attention mechanism. The attention mechanism allows variables to dynamically attend to some other variables while ignoring the rest, and enables capturing of CSIs in MRFs. A MAM is formulated as an MRF, allowing it to benefit from the rich set of existing MRF inference methods and scale to large models and datasets. To demonstrate MAM's capabilities to capture CSIs at scale, we apply MAMs to capture an important type of CSI that is present in a symbolic approach to recurrent computations in perceptual grouping. Experiments on two recently proposed synthetic perceptual grouping tasks and on realistic images demonstrate the advantages of MAMs in sample-efficiency, interpretability and generalizability when compared with strong recurrent neural network baselines, and validate MAM's capabilities to efficiently capture CSIs at scale.

In the context of Bayesian inversion for scientific and engineering modeling, Markov chain Monte Carlo sampling strategies are the benchmark due to their flexibility and robustness in dealing with arbitrary posterior probability density functions (PDFs). However, these algorithms been shown to be inefficient when sampling from posterior distributions that are high-dimensional or exhibit multi-modality and/or strong parameter correlations. In such contexts, the sequential Monte Carlo technique of transitional Markov chain Monte Carlo (TMCMC) provides a more efficient alternative. Despite the recent applicability for Bayesian updating and model selection across a variety of disciplines, TMCMC may require a prohibitive number of tempering stages when the prior PDF is significantly different from the target posterior. Furthermore, the need to start with an initial set of samples from the prior distribution may present a challenge when dealing with implicit priors, e.g. based on feasible regions. Finally, TMCMC can not be used for inverse problems with improper prior PDFs that represent lack of prior knowledge on all or a subset of parameters. In this investigation, a generalization of TMCMC that alleviates such challenges and limitations is proposed, resulting in a tempering sampling strategy of enhanced robustness and computational efficiency. Convergence analysis of the proposed sequential Monte Carlo algorithm is presented, proving that the distance between the intermediate distributions and the target posterior distribution monotonically decreases as the algorithm proceeds. The enhanced efficiency associated with the proposed generalization is highlighted through a series of test inverse problems and an engineering application in the oil and gas industry.

Active inference is a mathematical framework which originated in computational neuroscience as a theory of how the brain implements action, perception and learning. Recently, it has been shown to be a promising approach to the problems of state-estimation and control under uncertainty, as well as a foundation for the construction of goal-driven behaviours in robotics and artificial agents in general. Here, we review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning; describing current achievements with a particular focus on robotics. We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness. Furthermore, we connect this approach with other frameworks and discuss its expected benefits and challenges: a unified framework with functional biological plausibility using variational Bayesian inference.

Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they are less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules, which we call \emph{functions}. Inputs to the model are routed through a sequence of functions in a way that is end-to-end learned. The proposed architecture can flexibly compose computation along width and depth, and lends itself well to capacity extension after training. To demonstrate the versatility of Neural Interpreters, we evaluate it in two distinct settings: image classification and visual abstract reasoning on Raven Progressive Matrices. In the former, we show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner. In the latter, we find that Neural Interpreters are competitive with respect to the state-of-the-art in terms of systematic generalization

Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks. Most such models use deterministic attention while stochastic attention is less explored due to the optimization difficulties or complicated model design. This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights with a hierarchy of gamma distributions, and an encoder network by stacking Weibull distributions with a deterministic-upward-stochastic-downward structure to approximate the posterior. The resulting auto-encoding networks can be optimized in a differentiable way with a variational lower bound. It is simple to convert any models with deterministic attention, including pretrained ones, to the proposed Bayesian attention belief networks. On a variety of language understanding tasks, we show that our method outperforms deterministic attention and state-of-the-art stochastic attention in accuracy, uncertainty estimation, generalization across domains, and robustness to adversarial attacks. We further demonstrate the general applicability of our method on neural machine translation and visual question answering, showing great potential of incorporating our method into various attention-related tasks.

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.

北京阿比特科技有限公司