Multiparty session types (MSTs) are a type-based approach to verifying communication protocols. Central to MSTs is a projection operator: a partial function that maps protocols represented as global types to correct-by-construction implementations for each participant, represented as a communicating state machine. Existing projection operators are syntactic in nature, and trade efficiency for completeness. We present the first projection operator that is sound, complete, and efficient. Our projection separates synthesis from checking implementability. For synthesis, we use a simple automata-theoretic construction; for checking implementability, we present succinct conditions that summarize insights into the property of implementability. We use these conditions to show that MST implementability is PSPACE-complete. This improves upon a previous decision procedure that is in EXPSPACE and applies to a smaller class of MSTs. We demonstrate the effectiveness of our approach using a prototype implementation, which handles global types not supported by previous work without sacrificing performance.
Incorporating unstructured data into physical models is a challenging problem that is emerging in data assimilation. Traditional approaches focus on well-defined observation operators whose functional forms are typically assumed to be known. This prevents these methods from achieving a consistent model-data synthesis in configurations where the mapping from data-space to model-space is unknown. To address these shortcomings, in this paper we develop a physics-informed dynamical variational autoencoder ($\Phi$-DVAE) to embed diverse data streams into time-evolving physical systems described by differential equations. Our approach combines a standard, possibly nonlinear, filter for the latent state-space model and a VAE, to assimilate the unstructured data into the latent dynamical system. Unstructured data, in our example systems, comes in the form of video data and velocity field measurements, however the methodology is suitably generic to allow for arbitrary unknown observation operators. A variational Bayesian framework is used for the joint estimation of the encoding, latent states, and unknown system parameters. To demonstrate the method, we provide case studies with the Lorenz-63 ordinary differential equation, and the advection and Korteweg-de Vries partial differential equations. Our results, with synthetic data, show that $\Phi$-DVAE provides a data efficient dynamics encoding methodology which is competitive with standard approaches. Unknown parameters are recovered with uncertainty quantification, and unseen data are accurately predicted.
Vehicular edge computing (VEC) is emerging as a promising architecture of vehicular networks (VNs) by deploying the cloud computing resources at the edge of the VNs. This work aims to optimize resource allocation and task offloading in VEC networks. Specifically, we formulate a game theoretical resource allocation and task offloading problem (GTRATOP) that aims to maximize the system performance by jointly considering the incentive for cooperation, competition among vehicles, heterogeneity between VEC servers and vehicles, and inherent dynamic of VNs. Since the formulated GTRATOP is NP-hard, we propose an adaptive approach for resource allocation and task offloading in VEC networks by incorporating bargaining game and matching game, which is called BARGAIN-MATCH. First, for resource allocation, a bargaining game-based incentive is proposed to stimulate the vehicles and VEC servers to negotiate the optimal resource allocation and pricing decisions. Second, for task offloading, a many-to-one matching scheme is proposed to decide the optimal offloading strategies. Third, the dynamic and time-varying features are considered to adapt the strategies of BARGAIN-MATCH to the real-time VEC networks. Moreover, the BARGAIN-MATCH is proved to be stable and weak Pareto optimal. Simulation results demonstrate that the proposed BARGAIN-MATCH achieves superior system performance and efficiency compared to other methods, especially when the system workload is heavy.
Automata operating on infinite objects feature prominently in the theory of the modal $\mu$-calculus. One such application concerns the tableau games introduced by Niwi\'{n}ski & Walukiewicz, of which the winning condition for infinite plays can be naturally checked by a nondeterministic parity stream automaton. Inspired by work of Jungteerapanich and Stirling we show how determinization constructions of this automaton may be used to directly obtain proof systems for the $\mu$-calculus. More concretely, we introduce a binary tree construction for determinizing nondeterministic parity stream automata. Using this construction we define the annotated cyclic proof system $\mathsf{BT}$, where formulas are annotated by tuples of binary strings. Soundness and Completeness of this system follow almost immediately from the correctness of the determinization method.
The modern data economy is built on sharing data. However, sharing data can be an expensive and risky endeavour. Existing sharing systems like Distributed File Systems provide full read, write, and execute Role-based Access Control (RBAC) for sharing data, but can be expensive and difficult to scale. Likewise such systems operate on a binary access model for their data, either a user can read all the data or read none of the data. This approach is not necessary for a more read-only oriented data landscape, and one where data contains many dimensions that represent a risk if overshared. In order to encourage users to share data and smooth out the process of accessing such data a new approach is needed. This new approach must simplify the RBAC of older DFS approaches to something more read-only and something that integrates redaction for user protections. To accomplish this we present CageCoach, a simple sharing-oriented Distributed Cryptographic File System (DCFS). CageCoach leverages the simplicity and speed of basic HTTP, linked data concepts, and automatic redaction systems to facilitate safe and easy sharing of user data. The implementation of CageCoach is available at //github.umn.edu/CARPE415/CageCoach.
Automated classifiers (ACs), often built via supervised machine learning (SML), can categorize large, statistically powerful samples of data ranging from text to images and video, and have become widely popular measurement devices in communication science and related fields. Despite this popularity, even highly accurate classifiers make errors that cause misclassification bias and misleading results in downstream analyses-unless such analyses account for these errors. As we show in a systematic literature review of SML applications, communication scholars largely ignore misclassification bias. In principle, existing statistical methods can use "gold standard" validation data, such as that created by human annotators, to correct misclassification bias and produce consistent estimates. We introduce and test such methods, including a new method we design and implement in the R package misclassificationmodels, via Monte Carlo simulations designed to reveal each method's limitations, which we also release. Based on our results, we recommend our new error correction method as it is versatile and efficient. In sum, automated classifiers, even those below common accuracy standards or making systematic misclassifications, can be useful for measurement with careful study design and appropriate error correction methods.
Stringent line-of-sight demands necessitated by the fast attenuating nature of millimeter waves (mmWaves) through obstacles pose one of the central problems of next generation wireless networks. These mmWave links are easily disrupted due to obstacles, including vehicles and pedestrians, which cause degradation in link quality and even link failure. Dynamic obstacles are usually tracked by dedicated tracking hardware like RGB-D cameras, which usually have small ranges, and hence lead to prohibitively increased deployment costs to achieve complete coverage of the deployment area. In this manuscript, we propose an altogether different approach to track multiple dynamic obstacles in an mmWave network, solely based on short-term historical link failure information, without resorting to any dedicated tracking hardware. After proving that the said problem is NP-complete, we employ a greedy set-cover based approach to solve it. Using the obtained trajectories, we perform proactive handoffs for at-risk links. We compare our approach with an RGB-D camera-based approach and show that our approach provides better tracking and handoff performances when the camera coverage is low to moderate, which is often the case in real deployment scenarios.
We consider the estimation of factor model-based variance-covariance matrix when the factor loading matrix is assumed sparse. To do so, we rely on a system of penalized estimating functions to account for the identification issue of the factor loading matrix while fostering sparsity in potentially all its entries. We prove the oracle property of the penalized estimator for the factor model when the dimension is fixed. That is, the penalization procedure can recover the true sparse support, and the estimator is asymptotically normally distributed. Consistency and recovery of the true zero entries are established when the number of parameters is diverging. These theoretical results are supported by simulation experiments, and the relevance of the proposed method is illustrated by an application to portfolio allocation.
The recent success of large foundation models in artificial intelligence has prompted the emergence of chemical pre-trained models. Despite the growing interest in large molecular pre-trained models that provide informative representations for downstream tasks, attempts for multimodal pre-training approaches on the molecule domain were limited. To address this, we present a novel multimodal molecular pre-trained model that incorporates the modalities of structure and biochemical properties, drawing inspiration from recent advances in multimodal learning techniques. Our proposed model pipeline of data handling and training objectives aligns the structure/property features in a common embedding space, which enables the model to regard bidirectional information between the molecules' structure and properties. These contributions emerge synergistic knowledge, allowing us to tackle both multimodal and unimodal downstream tasks through a single model. Through extensive experiments, we demonstrate that our model shows remarkable capabilities in solving various meaningful chemical challenges, including conditional molecule generation, property prediction, molecule classification, and reaction prediction.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.
Knowledge graph embedding models learn the representations of entities and relations in the knowledge graphs for predicting missing links (relations) between entities. Their effectiveness are deeply affected by the ability of modeling and inferring different relation patterns such as symmetry, asymmetry, inversion, composition and transitivity. Although existing models are already able to model many of these relations patterns, transitivity, a very common relation pattern, is still not been fully supported. In this paper, we first theoretically show that the transitive relations can be modeled with projections. We then propose the Rot-Pro model which combines the projection and relational rotation together. We prove that Rot-Pro can infer all the above relation patterns. Experimental results show that the proposed Rot-Pro model effectively learns the transitivity pattern and achieves the state-of-the-art results on the link prediction task in the datasets containing transitive relations.