亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate secure transmissions in integrated satellite-terrestrial communications and the green interference based symbiotic security scheme is proposed. Particularly, the co-channel interference induced by the spectrum sharing between satellite and terrestrial networks and the inter-beam interference due to frequency reuse among satellite multi-beam serve as the green interference to assist the symbiotic secure transmission, where the secure transmissions of both satellite and terrestrial links are guaranteed simultaneously. Specifically, to realize the symbiotic security, we formulate a problem to maximize the sum secrecy rate of satellite users by cooperatively beamforming optimizing and a constraint of secrecy rate of each terrestrial user is guaranteed. Since the formulated problem is non-convex and intractable, the Taylor expansion and semi-definite relaxation (SDR) are adopted to further reformulate this problem, and the successive convex approximation (SCA) algorithm is designed to solve it. Finally, the tightness of the relaxation is proved. In addition, numerical results verify the efficiency of our proposed approach.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Since 2016, sharding has become an auspicious solution to tackle the scalability issue in legacy blockchain systems. Despite its potential to strongly boost the blockchain throughput, sharding comes with its own security issues. To ease the process of deciding which shard to place transactions, existing sharding protocols use a hash-based transaction sharding in which the hash value of a transaction determines its output shard. Unfortunately, we show that this mechanism opens up a loophole that could be exploited to conduct a single-shard flooding attack, a type of Denial-of-Service (DoS) attack, to overwhelm a single shard that ends up reducing the performance of the system as a whole. To counter the single-shard flooding attack, we propose a countermeasure that essentially eliminates the loophole by rejecting the use of hash-based transaction sharding. The countermeasure leverages the Trusted Execution Environment (TEE) to let blockchain's validators securely execute a transaction sharding algorithm with a negligible overhead. We provide a formal specification for the countermeasure and analyze its security properties in the Universal Composability (UC) framework. Finally, a proof-of-concept is developed to demonstrate the feasibility and practicality of our solution.

Integrating terrestrial and non-terrestrial networks has the potential of connecting the unconnected and enhancing the user experience for the already-connected, with technological and societal implications of the greatest long-term significance. A convergence of ground, air, and space wireless communications also represents a formidable endeavor for the mobile and satellite communications industries alike, as it entails defining and intelligently orchestrating a new 3D wireless network architecture. In this article, we present the key opportunities and challenges arising from this (r)evolution by presenting some of its disruptive use-cases and key building blocks, reviewing the relevant standardization activities, and pointing to open research problems. By considering two multi-operator paradigms, we also showcase how terrestrial networks could be efficiently re-engineered to cater for aerial services, or opportunistically complemented by non-terrestrial infrastructure to augment their current capabilities.

Cybersecurity threats affect all aspects of society; critical infrastructures (such as networks, corporate systems, water supply systems, and intelligent transportation systems) are especially prone to attacks and can have tangible negative consequences on society. However, these critical cyber systems are generally governed by multiple jurisdictions, for instance the Metro in the Washington, D.C. area is managed by the states of Virginia and Maryland, as well as the District of Columbia (DC) through Washington Metropolitan Area Transit Authority (WMATA). Additionally, the water treatment infrastructure managed by DC Water consists of waste water input from Fairfax and Arlington counties, and the district (i.e. DC). Additionally, cyber attacks usually launch from unknown sources, through unknown switches and servers, and end up at the destination without much knowledge on their source or path. Certain infrastructures are shared amongst multiple countries, another idiosyncrasy that exacerbates the issue of governance. This law paper however, is not concerned with the general governance of these infrastructures, rather with the ambiguity in the relevant laws or doctrines about which authority would prevail in the context of a cyber threat or a cyber-attack, with a focus on federal vs. state issues, international law involvement, federal preemption, technical aspects that could affect lawmaking, and conflicting responsibilities in cases of cyber crime. A legal analysis of previous cases is presented, as well as an extended discussion addressing different sides of the argument.

Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of "model growing" is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.

In popular media, there is often a connection drawn between the advent of awareness in artificial agents and those same agents simultaneously achieving human or superhuman level intelligence. In this work, we explore the validity and potential application of this seemingly intuitive link between consciousness and intelligence. We do so by examining the cognitive abilities associated with three contemporary theories of conscious function: Global Workspace Theory (GWT), Information Generation Theory (IGT), and Attention Schema Theory (AST). We find that all three theories specifically relate conscious function to some aspect of domain-general intelligence in humans. With this insight, we turn to the field of Artificial Intelligence (AI) and find that, while still far from demonstrating general intelligence, many state-of-the-art deep learning methods have begun to incorporate key aspects of each of the three functional theories. Having identified this trend, we use the motivating example of mental time travel in humans to propose ways in which insights from each of the three theories may be combined into a single unified and implementable model. Given that it is made possible by cognitive abilities underlying each of the three functional theories, artificial agents capable of mental time travel would not only possess greater general intelligence than current approaches, but also be more consistent with our current understanding of the functional role of consciousness in humans, thus making it a promising near-term goal for AI research.

Enhancing existing transmission lines is a useful tool to combat transmission congestion and guarantee transmission security with increasing demand and boosting the renewable energy source. This study concerns the selection of lines whose capacity should be expanded and by how much from the perspective of independent system operator (ISO) to minimize the system cost with the consideration of transmission line constraints and electricity generation and demand balance conditions, and incorporating ramp-up and startup ramp rates, shutdown ramp rates, ramp-down rate limits and minimum up and minimum down times. For that purpose, we develop the ISO unit commitment and economic dispatch model and show it as a right-hand side uncertainty multiple parametric analysis for the mixed integer linear programming (MILP) problem. We first relax the binary variable to continuous variables and employ the Lagrange method and Karush-Kuhn-Tucker conditions to obtain optimal solutions (optimal decision variables and objective function) and critical regions associated with active and inactive constraints. Further, we extend the traditional branch and bound method for the large-scale MILP problem by determining the upper bound of the problem at each node, then comparing the difference between the upper and lower bounds and reaching the approximate optimal solution within the decision makers' tolerated error range. In additional, the objective function's first derivative on the parameters of each line is used to inform the selection of lines to ease congestion and maximize social welfare. Finally, the amount of capacity upgrade will be chosen by balancing the cost-reduction rate of the objective function on parameters and the cost of the line upgrade. Our findings are supported by numerical simulation and provide transmission line planners with decision-making guidance.

We examine federated learning (FL) with over-the-air (OTA) aggregation, where mobile users (MUs) aim to reach a consensus on a global model with the help of a parameter server (PS) that aggregates the local gradients. In OTA FL, MUs train their models using local data at every training round and transmit their gradients simultaneously using the same frequency band in an uncoded fashion. Based on the received signal of the superposed gradients, the PS performs a global model update. While the OTA FL has a significantly decreased communication cost, it is susceptible to adverse channel effects and noise. Employing multiple antennas at the receiver side can reduce these effects, yet the path-loss is still a limiting factor for users located far away from the PS. To ameliorate this issue, in this paper, we propose a wireless-based hierarchical FL scheme that uses intermediate servers (ISs) to form clusters at the areas where the MUs are more densely located. Our scheme utilizes OTA cluster aggregations for the communication of the MUs with their corresponding IS, and OTA global aggregations from the ISs to the PS. We present a convergence analysis for the proposed algorithm, and show through numerical evaluations of the derived analytical expressions and experimental results that utilizing ISs results in a faster convergence and a better performance than the OTA FL alone while using less transmit power. We also validate the results on the performance using different number of cluster iterations with different datasets and data distributions. We conclude that the best choice of cluster aggregations depends on the data distribution among the MUs and the clusters.

In this paper, an intelligent reflecting surface (IRS) is leveraged to enhance the physical layer security of an integrated sensing and communication (ISAC) system in which the IRS is deployed to not only assist the downlink communication for multiple users, but also create a virtual line-of-sight (LoS) link for target sensing. In particular, we consider a challenging scenario where the target may be a suspicious eavesdropper that potentially intercepts the communication-user information transmitted by the base station (BS). We investigate the joint design of the phase shifts at the IRS and the communication as well as radar beamformers at the BS to maximize the sensing beampattern gain towards the target, subject to the maximum information leakage to the eavesdropping target and the minimum signal-to-interference-plus-noise ratio (SINR) required by users. Based on the availability of perfect channel state information (CSI) of all involved user links and the accurate target location at the BS, two scenarios are considered and two different optimization algorithms are proposed. For the ideal scenario where the CSI of the user links and the target location are perfectly known at the BS, a penalty-based algorithm is proposed to obtain a high-quality solution. In particular, the beamformers are obtained with a semi-closed-form solution using Lagrange duality and the IRS phase shifts are solved for in closed form by applying the majorization-minimization (MM) method. On the other hand, for the more practical scenario where the CSI is imperfect and the target location is uncertain, a robust algorithm based on the $\cal S$-procedure and sign-definiteness approaches is proposed. Simulation results demonstrate the effectiveness of the proposed scheme in achieving a trade-off between the communication quality and the sensing quality.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司