We propose a new framework for the sampling, compression, and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces. Our approach involves constructing a tensor called the RaySense sketch, which captures nearest neighbors from the underlying geometry of points along a set of rays. We explore various operations that can be performed on the RaySense sketch, leading to different properties and potential applications. Statistical information about the data set can be extracted from the sketch, independent of the ray set. Line integrals on point sets can be efficiently computed using the sketch. We also present several examples illustrating applications of the proposed strategy in practical scenarios.
Neural collapse provides an elegant mathematical characterization of learned last layer representations (a.k.a. features) and classifier weights in deep classification models. Such results not only provide insights but also motivate new techniques for improving practical deep models. However, most of the existing empirical and theoretical studies in neural collapse focus on the case that the number of classes is small relative to the dimension of the feature space. This paper extends neural collapse to cases where the number of classes are much larger than the dimension of feature space, which broadly occur for language models, retrieval systems, and face recognition applications. We show that the features and classifier exhibit a generalized neural collapse phenomenon, where the minimum one-vs-rest margins is maximized.We provide empirical study to verify the occurrence of generalized neural collapse in practical deep neural networks. Moreover, we provide theoretical study to show that the generalized neural collapse provably occurs under unconstrained feature model with spherical constraint, under certain technical conditions on feature dimension and number of classes.
The two-hand interaction is one of the most challenging signals to analyze due to the self-similarity, complicated articulations, and occlusions of hands. Although several datasets have been proposed for the two-hand interaction analysis, all of them do not achieve 1) diverse and realistic image appearances and 2) diverse and large-scale groundtruth (GT) 3D poses at the same time. In this work, we propose Re:InterHand, a dataset of relighted 3D interacting hands that achieve the two goals. To this end, we employ a state-of-the-art hand relighting network with our accurately tracked two-hand 3D poses. We compare our Re:InterHand with existing 3D interacting hands datasets and show the benefit of it. Our Re:InterHand is available in //mks0601.github.io/ReInterHand/.
Concept bottleneck models have been successfully used for explainable machine learning by encoding information within the model with a set of human-defined concepts. In the context of human-assisted or autonomous driving, explainability models can help user acceptance and understanding of decisions made by the autonomous vehicle, which can be used to rationalize and explain driver or vehicle behavior. We propose a new approach using concept bottlenecks as visual features for control command predictions and explanations of user and vehicle behavior. We learn a human-understandable concept layer that we use to explain sequential driving scenes while learning vehicle control commands. This approach can then be used to determine whether a change in a preferred gap or steering commands from a human (or autonomous vehicle) is led by an external stimulus or change in preferences. We achieve competitive performance to latent visual features while gaining interpretability within our model setup.
Obtaining the solutions of partial differential equations based on various machine learning methods has drawn more and more attention in the fields of scientific computation and engineering applications. In this work, we first propose a coupled Extreme Learning Machine (called CELM) method incorporated with the physical laws to solve a class of fourth-order biharmonic equations by reformulating it into two well-posed Poisson problems. In addition, some activation functions including tangent, gauss, sine, and trigonometric (sin+cos) functions are introduced to assess our CELM method. Notably, the sine and trigonometric functions demonstrate a remarkable ability to effectively minimize the approximation error of the CELM model. In the end, several numerical experiments are performed to study the initializing approaches for both the weights and biases of the hidden units in our CELM model and explore the required number of hidden units. Numerical results show the proposed CELM algorithm is high-precision and efficient to address the biharmonic equation in both regular and irregular domains.
The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations. Furthermore, we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti curve transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler Characteristic curve transform.
A number of engineering and scientific problems require representing and manipulating probability distributions over large alphabets, which we may think of as long vectors of reals summing to $1$. In some cases it is required to represent such a vector with only $b$ bits per entry. A natural choice is to partition the interval $[0,1]$ into $2^b$ uniform bins and quantize entries to each bin independently. We show that a minor modification of this procedure -- applying an entrywise non-linear function (compander) $f(x)$ prior to quantization -- yields an extremely effective quantization method. For example, for $b=8 (16)$ and $10^5$-sized alphabets, the quality of representation improves from a loss (under KL divergence) of $0.5 (0.1)$ bits/entry to $10^{-4} (10^{-9})$ bits/entry. Compared to floating point representations, our compander method improves the loss from $10^{-1}(10^{-6})$ to $10^{-4}(10^{-9})$ bits/entry. These numbers hold for both real-world data (word frequencies in books and DNA $k$-mer counts) and for synthetic randomly generated distributions. Theoretically, we set up a minimax optimality criterion and show that the compander $f(x) ~\propto~ \mathrm{ArcSinh}(\sqrt{(1/2) (K \log K) x})$ achieves near-optimal performance, attaining a KL-quantization loss of $\asymp 2^{-2b} \log^2 K$ for a $K$-letter alphabet and $b\to \infty$. Interestingly, a similar minimax criterion for the quadratic loss on the hypercube shows optimality of the standard uniform quantizer. This suggests that the $\mathrm{ArcSinh}$ quantizer is as fundamental for KL-distortion as the uniform quantizer for quadratic distortion.
For radial basis function (RBF) kernel interpolation of scattered data, Schaback in 1995 proved that the attainable approximation error and the condition number of the underlying interpolation matrix cannot be made small simultaneously. He referred to this finding as an "uncertainty relation", an undesirable consequence of which is that RBF kernel interpolation is susceptible to noisy data. In this paper, we propose and study a distributed interpolation method to manage and quantify the uncertainty brought on by interpolating noisy spherical data of non-negligible magnitude. We also present numerical simulation results showing that our method is practical and robust in terms of handling noisy data from challenging computing environments.
We provide several new results on the sample complexity of vector-valued linear predictors (parameterized by a matrix), and more generally neural networks. Focusing on size-independent bounds, where only the Frobenius norm distance of the parameters from some fixed reference matrix $W_0$ is controlled, we show that the sample complexity behavior can be surprisingly different than what we may expect considering the well-studied setting of scalar-valued linear predictors. This also leads to new sample complexity bounds for feed-forward neural networks, tackling some open questions in the literature, and establishing a new convex linear prediction problem that is provably learnable without uniform convergence.
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.