亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see //gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

As the uplink sensing has the advantage of easy implementation, it attracts great attention in integrated sensing and communication (ISAC) system. This paper presents an uplink ISAC system based on multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) technology. The mutual information (MI) is introduced as a unified metric to evaluate the performance of communication and sensing. In this paper, firstly, the upper and lower bounds of communication and sensing MI are derived in details based on the interaction between communication and sensing. And the ISAC waveform is optimized by maximizing the weighted sum of sensing and communication MI. The Monte Carlo simulation results show that, compared with other waveform optimization schemes, the proposed ISAC scheme has the best overall performance.

Large curved displays inside Virtual Reality environments are becoming popular for visualizing high-resolution content during analytical tasks, gaming or entertainment. Prior research showed that such displays provide a wide field of view and offer users a high level of immersion. However, little is known about users' performance (e.g., pointing speed and accuracy) on them. We explore users' pointing performance on large virtual curved displays. We investigate standard pointing factors (e.g., target width and amplitude) in combination with relevant curve-related factors, namely display curvature and both linear and angular measures. Our results show that the less curved the display, the higher the performance, i.e., faster movement time. This result holds for pointing tasks controlled via their visual properties (linear widths and amplitudes) or their motor properties (angular widths and amplitudes). Additionally, display curvatures significantly affect the error rate for both linear and angular conditions. Furthermore, we observe that curved displays perform better or similar to flat displays based on throughput analysis. Finally, we discuss our results and provide suggestions regarding pointing tasks on large curved displays in VR.

The use of Deep Neural Network (DNN) models in risk-based decision-making has attracted extensive attention with broad applications in medical, finance, manufacturing, and quality control. To mitigate prediction-related risks in decision making, prediction confidence or uncertainty should be assessed alongside the overall performance of algorithms. Recent studies on Bayesian deep learning helps quantify prediction uncertainty arises from input noises and model parameters. However, the normality assumption of input noise in these models limits their applicability to problems involving categorical and discrete feature variables in tabular datasets. In this paper, we propose a mathematical framework to quantify prediction uncertainty for DNN models. The prediction uncertainty arises from errors in predictors that follow some known finite discrete distribution. We then conducted a case study using the framework to predict treatment outcome for tuberculosis patients during their course of treatment. The results demonstrate under a certain level of risk, we can identify risk-sensitive cases, which are prone to be misclassified due to error in predictors. Comparing to the Monte Carlo dropout method, our proposed framework is more aware of misclassification cases. Our proposed framework for uncertainty quantification in deep learning can support risk-based decision making in applications when discrete errors in predictors are present.

We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contemporary sequence-to-sequence models allow for from-scratch training by summing over all possible label segmentations in a given topology. In our approach there are explicit, learnable probabilities for transitions between segments as opposed to a blank label that implicitly encodes duration statistics. We implement a GPU-based forward-backward algorithm that enables the simultaneous training of label and transition probabilities. We investigate recognition results and additionally Viterbi alignments of our models. We find that while the transition model training does not improve recognition performance, it has a positive impact on the alignment quality. The generated alignments are shown to be viable targets in state-of-the-art Viterbi trainings.

To meet next-generation IoT application demands, edge computing moves processing power and storage closer to the network edge to minimise latency and bandwidth utilisation. Edge computing is becoming popular as a result of these benefits, but resource management is still challenging. Researchers are utilising AI models to solve the challenge of resource management in edge computing systems. However, existing simulation tools are only concerned with typical resource management policies, not the adoption and implementation of AI models for resource management, especially. Consequently, researchers continue to face significant challenges, making it hard and time-consuming to use AI models when designing novel resource management policies for edge computing with existing simulation tools. To overcome these issues, we propose a lightweight Python-based toolkit called EdgeAISim for the simulation and modelling of AI models for designing resource management policies in edge computing environments. In EdgeAISim, we extended the basic components of the EdgeSimPy framework and developed new AI-based simulation models for task scheduling, energy management, service migration, network flow scheduling, and mobility support for edge computing environments. In EdgeAISim, we have utilised advanced AI models such as Multi-Armed Bandit with Upper Confidence Bound, Deep Q-Networks, Deep Q-Networks with Graphical Neural Network, and ActorCritic Network to optimize power usage while efficiently managing task migration within the edge computing environment. The performance of these proposed models of EdgeAISim is compared with the baseline, which uses a worst-fit algorithm-based resource management policy in different settings. Experimental results indicate that EdgeAISim exhibits a substantial reduction in power consumption, highlighting the compelling success of power optimization strategies in EdgeAISim.

The development of AR and VR technologies is enhancing users' online shopping experiences in various ways. However, in existing VR shopping applications, shopping contexts merely refer to the products and virtual malls or metaphorical scenes where users select products. This leads to the defect that users can only imagine rather than intuitively feel whether the selected products are suitable for their real usage scenes, resulting in a significant discrepancy between their expectations before and after the purchase. To address this issue, we propose PaRUS, a VR shopping approach that focuses on the context between products and their real usage scenes. PaRUS begins by rebuilding the virtual scenario of the products' real usage scene through a new semantic scene reconstruction pipeline, which preserves both the structured scene and textured object models in the scene. Afterwards, intuitive visualization of how the selected products fit the reconstructed virtual scene is provided. We conducted two user studies to evaluate how PaRUS impacts user experience, behavior, and satisfaction with their purchase. The results indicated that PaRUS significantly reduced the perceived performance risk and improved users' trust and satisfaction with their purchase results.

This paper introduces LIVE: Lidar Informed Visual Search focused on the problem of multi-robot (MR) planning and execution for robust visual detection of multiple objects. We perform extensive real-world experiments with a two-robot team in an indoor apartment setting. LIVE acts as a perception module that detects unmapped obstacles, or Short Term Features (STFs), in Lidar observations. STFs are filtered, resulting in regions to be visually inspected by modifying plans online. Lidar Coverage Path Planning (CPP) is employed for generating highly efficient global plans for heterogeneous robot teams. Finally, we present a data model and a demonstration dataset, which can be found by visiting our project website //sites.google.com/view/live-iros2023/home.

As the adoption of IoT-based smart homes continues to grow, the importance of addressing potential conflicts becomes increasingly vital for ensuring seamless functionality and user satisfaction. In this survey, we introduce a novel conflict taxonomy, complete with formal definitions of each conflict type that may arise within the smart home environment. We design an advanced conflict model to effectively categorize these conflicts, setting the stage for our in-depth review of recent research in the field. By employing our proposed model, we systematically classify conflicts and present a comprehensive overview of cutting-edge conflict detection approaches. This extensive analysis allows us to highlight similarities, clarify significant differences, and uncover prevailing trends in conflict detection techniques. In conclusion, we shed light on open issues and suggest promising avenues for future research to foster accelerated development and deployment of IoT-based smart homes, ultimately enhancing their overall performance and user experience.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司