亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The need for skilled medical support is growing in the era of digital healthcare. This research presents an innovative strategy, utilising the RuBERT model, for categorising user inquiries in the field of medical consultation with a focus on expert specialisation. By harnessing the capabilities of transformers, we fine-tuned the pre-trained RuBERT model on a varied dataset, which facilitates precise correspondence between queries and particular medical specialisms. Using a comprehensive dataset, we have demonstrated our approach's superior performance with an F1-score of over 92%, calculated through both cross-validation and the traditional split of test and train datasets. Our approach has shown excellent generalisation across medical domains such as cardiology, neurology and dermatology. This methodology provides practical benefits by directing users to appropriate specialists for prompt and targeted medical advice. It also enhances healthcare system efficiency, reduces practitioner burden, and improves patient care quality. In summary, our suggested strategy facilitates the attainment of specific medical knowledge, offering prompt and precise advice within the digital healthcare field.

相關內容

Pancreatic ductal adenocarcinoma (PDAC) presents a critical global health challenge, and early detection is crucial for improving the 5-year survival rate. Recent medical imaging and computational algorithm advances offer potential solutions for early diagnosis. Deep learning, particularly in the form of convolutional neural networks (CNNs), has demonstrated success in medical image analysis tasks, including classification and segmentation. However, the limited availability of clinical data for training purposes continues to provide a significant obstacle. Data augmentation, generative adversarial networks (GANs), and cross-validation are potential techniques to address this limitation and improve model performance, but effective solutions are still rare for 3D PDAC, where contrast is especially poor owing to the high heterogeneity in both tumor and background tissues. In this study, we developed a new GAN-based model, named 3DGAUnet, for generating realistic 3D CT images of PDAC tumors and pancreatic tissue, which can generate the interslice connection data that the existing 2D CT image synthesis models lack. Our innovation is to develop a 3D U-Net architecture for the generator to improve shape and texture learning for PDAC tumors and pancreatic tissue. Our approach offers a promising path to tackle the urgent requirement for creative and synergistic methods to combat PDAC. The development of this GAN-based model has the potential to alleviate data scarcity issues, elevate the quality of synthesized data, and thereby facilitate the progression of deep learning models to enhance the accuracy and early detection of PDAC tumors, which could profoundly impact patient outcomes. Furthermore, this model has the potential to be adapted to other types of solid tumors, hence making significant contributions to the field of medical imaging in terms of image processing models.

Uncontrolled hypertension is a global problem that needs to be addressed. Despite the many mHealth solutions in the market, the nonadherence relative to intended use jeopardizes treatment success. Although investigating user experience is one of the most important mechanisms for understanding mHealth discontinuance, surprisingly, the core determinants of overall user experience (i.e., positive and negative) about mHealth apps for hypertension are unknown. To address the mentioned gap in knowledge, this study adopts the computational grounded theory methodological framework and employs advanced deep learning algorithms to predict core quality criteria that affect overall user experience of hypertension apps published in the Apple App Store. This study contributes to theory and practice of designing evidence-based interventions for hypertension in the form of propositions and provide valuable managerial implications and recommendations for manufacturers.

Over the past few years, research has witnessed the advancement of deep learning models trained on large datasets, some even encompassing millions of examples. While these impressive performance on their hidden test sets, they often underperform when assessed on external datasets. Recognizing the critical role of generalization in medical AI development, many prestigious journals now require reporting results both on the local hidden test set as well as on external datasets before considering a study for publication. Effectively, the field of medical AI has transitioned from the traditional usage of a single dataset that is split into train and test to a more comprehensive framework using multiple datasets, some of which are used for model development (source domain) and others for testing (target domains). However, this new experimental setting does not necessarily resolve the challenge of generalization. This is because of the variability encountered in intended use and specificities across hospital cultures making the idea of universally generalizable systems a myth. On the other hand, the systematic, and a fortiori recurrent re-calibration, of models at the individual hospital level, although ideal, may be overoptimistic given the legal, regulatory and technical challenges that are involved. Re-calibration using transfer learning may not even be possible in some instances where reference labels of target domains are not available. In this perspective we establish a hierarchical three-level scale system reflecting the generalization level of a medical AI algorithm. This scale better reflects the diversity of real-world medical scenarios per which target domain data for re-calibration of models may or not be available and if it is, may or not have reference labels systematically available.

Blood vessel orientation as visualized in 3D medical images is an important descriptor of its geometry that can be used for centerline extraction and subsequent segmentation and visualization. Arteries appear at many scales and levels of tortuosity, and determining their exact orientation is challenging. Recent works have used 3D convolutional neural networks (CNNs) for this purpose, but CNNs are sensitive to varying vessel sizes and orientations. We present SIRE: a scale-invariant, rotation-equivariant estimator for local vessel orientation. SIRE is modular and can generalise due to symmetry preservation. SIRE consists of a gauge equivariant mesh CNN (GEM-CNN) operating on multiple nested spherical meshes with different sizes in parallel. The features on each mesh are a projection of image intensities within the corresponding sphere. These features are intrinsic to the sphere and, in combination with the GEM-CNN, lead to SO(3)-equivariance. Approximate scale invariance is achieved by weight sharing and use of a symmetric maximum function to combine multi-scale predictions. Hence, SIRE can be trained with arbitrarily oriented vessels with varying radii to generalise to vessels with a wide range of calibres and tortuosity. We demonstrate the efficacy of SIRE using three datasets containing vessels of varying scales: the vascular model repository (VMR), the ASOCA coronary artery set, and a set of abdominal aortic aneurysms (AAAs). We embed SIRE in a centerline tracker which accurately tracks AAAs, regardless of the data SIRE is trained with. Moreover, SIRE can be used to track coronary arteries, even when trained only with AAAs. In conclusion, by incorporating SO(3) and scale symmetries, SIRE can determine the orientations of vessels outside of the training domain, forming a robust and data-efficient solution to geometric analysis of blood vessels in 3D medical images.

Controlling the parameters' norm often yields good generalisation when training neural networks. Beyond simple intuitions, the relation between regularising parameters' norm and obtained estimators remains theoretically misunderstood. For one hidden ReLU layer networks with unidimensional data, this work shows the parameters' norm required to represent a function is given by the total variation of its second derivative, weighted by a $\sqrt{1+x^2}$ factor. Notably, this weighting factor disappears when the norm of bias terms is not regularised. The presence of this additional weighting factor is of utmost significance as it is shown to enforce the uniqueness and sparsity (in the number of kinks) of the minimal norm interpolator. Conversely, omitting the bias' norm allows for non-sparse solutions. Penalising the bias terms in the regularisation, either explicitly or implicitly, thus leads to sparse estimators.

Case-based explanations are an intuitive method to gain insight into the decision-making process of deep learning models in clinical contexts. However, medical images cannot be shared as explanations due to privacy concerns. To address this problem, we propose a novel method for disentangling identity and medical characteristics of images and apply it to anonymize medical images. The disentanglement mechanism replaces some feature vectors in an image while ensuring that the remaining features are preserved, obtaining independent feature vectors that encode the images' identity and medical characteristics. We also propose a model to manufacture synthetic privacy-preserving identities to replace the original image's identity and achieve anonymization. The models are applied to medical and biometric datasets, demonstrating their capacity to generate realistic-looking anonymized images that preserve their original medical content. Additionally, the experiments show the network's inherent capacity to generate counterfactual images through the replacement of medical features.

Causal investigations in observational studies pose a great challenge in scientific research where randomized trials or intervention-based studies are not feasible. Leveraging Shannon's seminal work on information theory, we consider a framework of asymmetry where any causal link between putative cause and effect must be explained through a mechanism governing the cause as well as a generative process yielding an effect of the cause. Under weak assumptions, this framework enables the assessment of whether X is a stronger predictor of Y or vice-versa. Under stronger identifiability assumptions our framework is able to distinguish between cause and effect using observational data. We establish key statistical properties of this framework. Our proposed methodology relies on scalable non-parametric density estimation using fast Fourier transformation. The resulting estimation method is manyfold faster than the classical bandwidth-based density estimation while maintaining comparable mean integrated squared error rates. We investigate key asymptotic properties of our methodology and introduce a data-splitting technique to facilitate inference. The key attraction of our framework is its inference toolkit, which allows researchers to quantify uncertainty in causal discovery findings. We illustrate the performance of our methodology through simulation studies as well as multiple real data examples.

The task of community detection, which aims to partition a network into clusters of nodes to summarize its large-scale structure, has spawned the development of many competing algorithms with varying objectives. Some community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic generative model, while other methods are descriptive, dividing a network according to an objective motivated by a particular application, making it challenging to compare these methods on the same scale. Here we present a solution to this problem that associates any community detection objective, inferential or descriptive, with its corresponding implicit network generative model. This allows us to compute the description length of a network and its partition under arbitrary objectives, providing a principled measure to compare the performance of different algorithms without the need for "ground truth" labels. Our approach also gives access to instances of the community detection problem that are optimal to any given algorithm, and in this way reveals intrinsic biases in popular descriptive methods, explaining their tendency to overfit. Using our framework, we compare a number of community detection methods on artificial networks, and on a corpus of over 500 structurally diverse empirical networks. We find that more expressive community detection methods exhibit consistently superior compression performance on structured data instances, without having degraded performance on a minority of situations where more specialized algorithms perform optimally. Our results undermine the implications of the "no free lunch" theorem for community detection, both conceptually and in practice, since it is confined to unstructured data instances, unlike relevant community detection problems which are structured by requirement.

Data standardization has become one of the leading methods neuroimaging researchers rely on for data sharing and reproducibility. Data standardization promotes a common framework through which researchers can utilize others' data. Yet, as of today, formatting datasets that adhere to community best practices requires technical expertise involving coding and considerable knowledge of file formats and standards. We describe ezBIDS, a tool for converting neuroimaging data and associated metadata to the Brain Imaging Data Structure (BIDS) standard. ezBIDS provides four unique features: (1) No installation or programming requirements. (2) Handling of both imaging and task events data and metadata. (3) Automated inference and guidance for adherence to BIDS. (4) Multiple data management options: download BIDS data to local system, or transfer to OpenNeuro.org or brainlife.io. In sum, ezBIDS requires neither coding proficiency nor knowledge of BIDS and is the first BIDS tool to offer guided standardization, support for task events conversion, and interoperability with OpenNeuro and brainlife.io.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司