In this paper, we proposed a multi-objective approach for the EEG Inverse Problem. This formulation does not need unknown parameters that involve empirical procedures. Due to the combinatorial characteristics of the problem, this alternative included evolutionary strategies to resolve it. The result is a Multi-objective Evolutionary Algorithm based on Anatomical Restrictions (MOEAAR) to estimate distributed solutions. The comparative tests were between this approach and 3 classic methods of regularization: LASSO, Ridge-L and ENET-L. In the experimental phase, regression models were selected to obtain sparse and distributed solutions. The analysis involved simulated data with different signal-to-noise ratio (SNR). The indicators for quality control were Localization Error, Spatial Resolution and Visibility. The MOEAAR evidenced better stability than the classic methods in the reconstruction and localization of the maximum activation. The norm L0 was used to estimate sparse solutions with the evolutionary approach and its results were relevant.
In this paper, we present an algorithm that computes funnels along trajectories of systems of ordinary differential equations. A funnel is a time-varying set of states containing the given trajectory, for which the evolution from within the set at any given time stays in the funnel. Hence it generalizes the behavior of single trajectories to sets around them, which is an important task, for example, in robot motion planning. In contrast to approaches based on sum-of-squares programming, which poorly scale to high dimensions, our approach is based on falsification and tackles the funnel computation task directly, through numerical optimization. This approach computes accurate funnel estimates far more efficiently and leaves formal verification to the end, outside all funnel size optimization loops.
We consider a policy gradient algorithm applied to a finite-arm bandit problem with Bernoulli rewards. We allow learning rates to depend on the current state of the algorithm, rather than use a deterministic time-decreasing learning rate. The state of the algorithm forms a Markov chain on the probability simplex. We apply Foster-Lyapunov techniques to analyse the stability of this Markov chain. We prove that if learning rates are well chosen then the policy gradient algorithm is a transient Markov chain and the state of the chain converges on the optimal arm with logarithmic or poly-logarithmic regret.
The aim of this paper is to provide a solid mathematical discussion of the inverse problem in Magnetorelaxometry Imaging (MRXI), a currently developed technique for quantitative biomedical imaging using magnetic nanoparticles. We provide a detailed discussion of the mathematical modeling of the forward problems including possible ways to activate and measure, leading to a severely ill-posed linear inverse problem. Moreover, we formulate an idealized version of the inverse problem for infinitesimal small activation coils, which allows for a more detailed analysis of uniqueness issues. We propose a variational regularization approach to compute stable approximations of the solution and discuss its discretization and numerical solution. Results on synthetic are presented and improvements to methods used previously in practice are demonstrated. Finally we give an outlook to further questions and in particular experimental design.
Learning vector autoregressive models from multivariate time series is conventionally approached through least squares or maximum likelihood estimation. These methods typically assume a fully connected model which provides no direct insight to the model structure and may lead to highly noisy estimates of the parameters. Because of these limitations, there has been an increasing interest towards methods that produce sparse estimates through penalized regression. However, such methods are computationally intensive and may become prohibitively time-consuming when the number of variables in the model increases. In this paper we adopt an approximate Bayesian approach to the learning problem by combining fractional marginal likelihood and pseudo-likelihood. We propose a novel method, PLVAR, that is both faster and produces more accurate estimates than the state-of-the-art methods based on penalized regression. We prove the consistency of the PLVAR estimator and demonstrate the attractive performance of the method on both simulated and real-world data.
Neural networks are increasingly used to estimate parameters in quantitative MRI, in particular in magnetic resonance fingerprinting. Their advantages over the gold standard non-linear least square fitting are their superior speed and their immunity to the non-convexity of many fitting problems. We find, however, that in heterogeneous parameter spaces, i.e. in spaces in which the variance of the estimated parameters varies considerably, good performance is hard to achieve and requires arduous tweaking of the loss function, hyper parameters, and the distribution of the training data in parameter space. Here, we address these issues with a theoretically well-founded loss function: the Cram\'er-Rao bound (CRB) provides a theoretical lower bound for the variance of an unbiased estimator and we propose to normalize the squared error with respective CRB. With this normalization, we balance the contributions of hard-to-estimate and not-so-hard-to-estimate parameters and areas in parameter space, and avoid a dominance of the former in the overall training loss. Further, the CRB-based loss function equals one for a maximally-efficient unbiased estimator, which we consider the ideal estimator. Hence, the proposed CRB-based loss function provides an absolute evaluation metric. We compare a network trained with the CRB-based loss with a network trained with the commonly used means squared error loss and demonstrate the advantages of the former in numerical, phantom, and in vivo experiments.
Recent works have investigated deep learning models trained by optimising PAC-Bayes bounds, with priors that are learnt on subsets of the data. This combination has been shown to lead not only to accurate classifiers, but also to remarkably tight risk certificates, bearing promise towards self-certified learning (i.e. use all the data to learn a predictor and certify its quality). In this work, we empirically investigate the role of the prior. We experiment on 6 datasets with different strategies and amounts of data to learn data-dependent PAC-Bayes priors, and we compare them in terms of their effect on test performance of the learnt predictors and tightness of their risk certificate. We ask what is the optimal amount of data which should be allocated for building the prior and show that the optimum may be dataset dependent. We demonstrate that using a small percentage of the prior-building data for validation of the prior leads to promising results. We include a comparison of underparameterised and overparameterised models, along with an empirical study of different training objectives and regularisation strategies to learn the prior distribution.
In a widely studied class of multi-parametric optimization problems, the objective value of each solution is an affine function of real-valued parameters. For many important multi-parametric optimization problems, an optimal solutions set with minimum cardinality can contain super-polynomially many solutions. Consequently, any exact algorithm for such problems must output a super-polynomial number of solutions. We propose an approximation algorithm that is applicable to a general class of multi-parametric optimization problems and outputs a number of solutions that is bounded polynomially in the instance size and the inverse of the approximation guarantee. This method lifts approximation algorithms for non-parametric optimization problems to their parametric formulations, providing an approximation guarantee that is arbitrarily close to the approximation guarantee for the non-parametric problem. If the non-parametric problem can be solved exactly in polynomial time or if an FPTAS is available, the method yields an FPTAS. We discuss implications to important multi-parametric combinatorial optimizations problems. Remarkably, we obtain a $(\frac{3}{2} + \varepsilon)$-approximation algorithm for the multi-parametric metric travelling salesman problem, whereas the non-parametric version is known to be APX-complete. Furthermore, we show that the cardinality of a minimal size approximation set is in general not $\ell$-approximable for any natural number $\ell$.
In real world settings, numerous constraints are present which are hard to specify mathematically. However, for the real world deployment of reinforcement learning (RL), it is critical that RL agents are aware of these constraints, so that they can act safely. In this work, we consider the problem of learning constraints from demonstrations of a constraint-abiding agent's behavior. We experimentally validate our approach and show that our framework can successfully learn the most likely constraints that the agent respects. We further show that these learned constraints are \textit{transferable} to new agents that may have different morphologies and/or reward functions. Previous works in this regard have either mainly been restricted to tabular (discrete) settings, specific types of constraints or assume the environment's transition dynamics. In contrast, our framework is able to learn arbitrary \textit{Markovian} constraints in high-dimensions in a completely model-free setting. The code can be found it: \url{//github.com/shehryar-malik/icrl}.
We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
Image segmentation is the process of partitioning the image into significant regions easier to analyze. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the Conjugate Gradient algorithm (CG) for image segmentation, based on the Hidden Markov Random Field. Since derivatives are not available for this expression, finite differences are used in the CG algorithm to approximate the first derivative. The approach is evaluated using a number of publicly available images, where ground truth is known. The Dice Coefficient is used as an objective criterion to measure the quality of segmentation. The results show that the proposed CG approach compares favorably with other variants of Hidden Markov Random Field segmentation algorithms.