亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine Learning (ML) models have gained popularity in medical imaging analysis given their expert level performance in many medical domains. To enhance the trustworthiness, acceptance, and regulatory compliance of medical imaging models and to facilitate their integration into clinical settings, we review and categorise methods for ensuring ML reliability, both during development and throughout the model's lifespan. Specifically, we provide an overview of methods assessing models' inner-workings regarding bias encoding and detection of data drift for disease classification models. Additionally, to evaluate the severity in case of a significant drift, we provide an overview of the methods developed for classifier accuracy estimation in case of no access to ground truth labels. This should enable practitioners to implement methods ensuring reliable ML deployment and consistent prediction performance over time.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · Extensibility · 知識 (knowledge) · 查準率/準確率 ·
2024 年 11 月 4 日

Generalist foundation models (GFMs) are renowned for their exceptional capability and flexibility in effectively generalizing across diverse tasks and modalities. In the field of medicine, while GFMs exhibit superior generalizability based on their extensive intrinsic knowledge as well as proficiency in instruction following and in-context learning, specialist models excel in precision due to their domain knowledge. In this work, for the first time, we explore the synergy between the GFM and specialist models, to enable precise medical image analysis on a broader scope. Specifically, we propose a cooperative framework, Generalist-Specialist Collaboration (GSCo), which consists of two stages, namely the construction of GFM and specialists, and collaborative inference on downstream tasks. In the construction stage, we develop MedDr, the largest open-source GFM tailored for medicine, showcasing exceptional instruction-following and in-context learning capabilities. Meanwhile, a series of lightweight specialists are crafted for downstream tasks with low computational cost. In the collaborative inference stage, we introduce two cooperative mechanisms, Mixture-of-Expert Diagnosis and Retrieval-Augmented Diagnosis, to harvest the generalist's in-context learning abilities alongside the specialists' domain expertise. For a comprehensive evaluation, we curate a large-scale benchmark featuring 28 datasets and about 250,000 images. Extensive results demonstrate that MedDr consistently outperforms state-of-the-art GFMs on downstream datasets. Furthermore, GSCo exceeds both GFMs and specialists across all out-of-domain disease diagnosis datasets. These findings indicate a significant paradigm shift in the application of GFMs, transitioning from separate models for specific tasks to a collaborative approach between GFMs and specialists, thereby advancing the frontiers of generalizable AI in medicine.

Many critical decisions, such as personalized medical diagnoses and product pricing, are made based on insights gained from designing, observing, and analyzing a series of experiments. This highlights the crucial role of experimental design, which goes beyond merely collecting information on system parameters as in traditional Bayesian experimental design (BED), but also plays a key part in facilitating downstream decision-making. Most recent BED methods use an amortized policy network to rapidly design experiments. However, the information gathered through these methods is suboptimal for down-the-line decision-making, as the experiments are not inherently designed with downstream objectives in mind. In this paper, we present an amortized decision-aware BED framework that prioritizes maximizing downstream decision utility. We introduce a novel architecture, the Transformer Neural Decision Process (TNDP), capable of instantly proposing the next experimental design, whilst inferring the downstream decision, thus effectively amortizing both tasks within a unified workflow. We demonstrate the performance of our method across several tasks, showing that it can deliver informative designs and facilitate accurate decision-making.

Federated Learning (FL) has emerged as a transformative approach in healthcare, enabling collaborative model training across decentralized data sources while preserving user privacy. However, performance of FL rapidly degrades in practical scenarios due to the inherent bias in non Independent and Identically distributed (non-IID) data among participating clients, which poses significant challenges to model accuracy and generalization. Therefore, we propose the Bias-Aware Client Selection Algorithm (BACSA), which detects user bias and strategically selects clients based on their bias profiles. In addition, the proposed algorithm considers privacy preservation, fairness and constraints of wireless network environments, making it suitable for sensitive healthcare applications where Quality of Service (QoS), privacy and security are paramount. Our approach begins with a novel method for detecting user bias by analyzing model parameters and correlating them with the distribution of class-specific data samples. We then formulate a mixed-integer non-linear client selection problem leveraging the detected bias, alongside wireless network constraints, to optimize FL performance. We demonstrate that BACSA improves convergence and accuracy, compared to existing benchmarks, through evaluations on various data distributions, including Dirichlet and class-constrained scenarios. Additionally, we explore the trade-offs between accuracy, fairness, and network constraints, indicating the adaptability and robustness of BACSA to address diverse healthcare applications.

Statistical methods have been widely misused and misinterpreted in various scientific fields, raising significant concerns about the integrity of scientific research. To mitigate this problem, we propose a new method for formally specifying and automatically verifying the correctness of statistical programs. In this method, programmers are required to annotate the source code of the statistical programs with the requirements for these methods. Through this annotation, they are reminded to check the requirements for statistical methods, including those that cannot be formally verified, such as the distribution of the unknown true population. Our software tool StatWhy automatically checks whether programmers have properly specified the requirements for the statistical methods, thereby identifying any missing requirements that need to be addressed. This tool is implemented using the Why3 platform to verify the correctness of OCaml programs that conduct statistical hypothesis testing. We demonstrate how StatWhy can be used to avoid common errors in various popular statistical hypothesis testing programs.

We introduce a fairness-aware dataset for job recommendations in advertising, designed to foster research in algorithmic fairness within real-world scenarios. It was collected and prepared to comply with privacy standards and business confidentiality. An additional challenge is the lack of access to protected user attributes such as gender, for which we propose a solution to obtain a proxy estimate. Despite being anonymized and including a proxy for a sensitive attribute, our dataset preserves predictive power and maintains a realistic and challenging benchmark. This dataset addresses a significant gap in the availability of fairness-focused resources for high-impact domains like advertising -- the actual impact being having access or not to precious employment opportunities, where balancing fairness and utility is a common industrial challenge. We also explore various stages in the advertising process where unfairness can occur and introduce a method to compute a fair utility metric for the job recommendations in online systems case from a biased dataset. Experimental evaluations of bias mitigation techniques on the released dataset demonstrate potential improvements in fairness and the associated trade-offs with utility. The dataset is hosted at //huggingface.co/datasets/criteo/FairJob. Source code for the experiments is hosted at //github.com/criteo-research/FairJob-dataset/.

Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning models can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate high margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively and confidently use the logit margin to detect brittle decisions with such models. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to assess adversarial vulnerability in deployment scenarios efficiently.

Bayesian Kernel Machine Regression (BKMR) has emerged as a powerful tool to detect negative health effects from exposure to complex multi-pollutant mixtures. However, its performance is degraded when data deviate from normality. In this comprehensive simulation analysis, we show that BKMR's power and test size vary under different distributions and covariance matrix structures. Our results demonstrate specifically that BKMR's robustness is influenced by the response's coefficient of variation (CV), resulting in reduced accuracy to detect true effects when data are skewed. Test sizes become uncontrolled (> 0.05) as CV values increase, leading to inflated false detection rates. However, we find that BKMR effectively utilizes off-diagonal covariance information corresponding to predictor interdependencies, increasing statistical power and accuracy. To achieve reliable and accurate results, we advocate for scrutiny of data skewness and covariance before applying BKMR, particularly when used to predict cognitive decline from blood/urine heavy metal concentrations in environmental health contexts.

Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司