亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data will be publicly released.

相關內容

This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose \textbf{S}mart \textbf{P}arallel \textbf{A}uto-\textbf{C}orrect d\textbf{E}coding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.

In the era of generative artificial intelligence (AI), the fusion of large language models (LLMs) offers unprecedented opportunities for innovation in the field of modern education. We embark on an exploration of prompted LLMs within the context of educational and assessment applications to uncover their potential. Through a series of carefully crafted research questions, we investigate the effectiveness of prompt-based techniques in generating open-ended questions from school-level textbooks, assess their efficiency in generating open-ended questions from undergraduate-level technical textbooks, and explore the feasibility of employing a chain-of-thought inspired multi-stage prompting approach for language-agnostic multiple-choice question (MCQ) generation. Additionally, we evaluate the ability of prompted LLMs for language learning, exemplified through a case study in the low-resource Indian language Bengali, to explain Bengali grammatical errors. We also evaluate the potential of prompted LLMs to assess human resource (HR) spoken interview transcripts. By juxtaposing the capabilities of LLMs with those of human experts across various educational tasks and domains, our aim is to shed light on the potential and limitations of LLMs in reshaping educational practices.

Recently, large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task. Existing methods have explored utilizing LLMs as data annotators to generate synthesized data for training contrastive learning based sentence embedding models such as SimCSE. However, since contrastive learning models are sensitive to the quality of sentence pairs, the effectiveness of these methods is largely influenced by the content generated from LLMs, highlighting the need for more refined generation in the context of sentence representation learning. Building upon this premise, we propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus for training base sentence embedding models into three stages (i.e., sentence generation, sentence pair construction, in-batch training) and refines the generated content at these three distinct stages, ensuring only high-quality sentence pairs are utilized to train a base contrastive learning model. Our extensive experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results. Comprehensive analyses further underscore the potential of our framework in various application scenarios and achieving better sentence representation learning with LLMs.

In this paper, we deeply explore several mechanisms employed by Transformer-based language models in factual recall tasks. In zero-shot scenarios, given a prompt like ``The capital of France is,'' task-specific attention heads extract the topic entity, such as ``France,'' from the context and pass it to subsequent MLPs to recall the required answer such as ``Paris.'' We introduce a novel analysis method aimed at decomposing the outputs of the MLP into components understandable by humans. Through this method, we quantify the function of the MLP layer following these task-specific heads. In the residual stream, it either erases or amplifies the information originating from individual heads. Moreover, it generates a component that redirects the residual stream towards the direction of its expected answer. These zero-shot mechanisms are also employed in few-shot scenarios. Additionally, we observed a widely existent anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. Our interpretations have been evaluated across various language models, including the GPT-2 families, 1.3B OPT, and 7B Llama-2, encompassing diverse tasks spanning various domains of factual knowledge.

Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions in the recent past. However, the choice of use-cases that incorporate RAG with LLMs have been either generic or extremely domain specific, thereby questioning the scalability and generalizability of RAG-LLM approaches. In this work, we propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user query routing, data retrieval and custom prompting for question answering capabilities from data tables that are highly varying and large in size. Our system is tuned to extract information from Enterprise-level data products and furnish real time responses under 10 seconds. One prompt manages user-to-data authentication followed by three prompts to route, fetch data and generate a customizable prompt natural language responses. Additionally, we propose a five metric scoring module that detects and reports hallucinations in the LLM responses. Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains. Extensions to the proposed extreme RAG architectures can enable heterogeneous source querying using LLMs.

The humanlike responses of large language models (LLMs) have prompted social scientists to investigate whether LLMs can be used to simulate human participants in experiments, opinion polls and surveys. Of central interest in this line of research has been mapping out the psychological profiles of LLMs by prompting them to respond to standardized questionnaires. The conflicting findings of this research are unsurprising given that mapping out underlying, or latent, traits from LLMs' text responses to questionnaires is no easy task. To address this, we use psychometrics, the science of psychological measurement. In this study, we prompt OpenAI's flagship models, GPT-3.5 and GPT-4, to assume different personas and respond to a range of standardized measures of personality constructs. We used two kinds of persona descriptions: either generic (four or five random person descriptions) or specific (mostly demographics of actual humans from a large-scale human dataset). We found that the responses from GPT-4, but not GPT-3.5, using generic persona descriptions show promising, albeit not perfect, psychometric properties, similar to human norms, but the data from both LLMs when using specific demographic profiles, show poor psychometrics properties. We conclude that, currently, when LLMs are asked to simulate silicon personas, their responses are poor signals of potentially underlying latent traits. Thus, our work casts doubt on LLMs' ability to simulate individual-level human behaviour across multiple-choice question answering tasks.

The rising popularity of multimodal large language models (MLLMs) has sparked a significant increase in research dedicated to evaluating these models. However, current evaluation studies predominantly concentrate on the ability of models to comprehend and reason within a unimodal (vision-only) context, overlooking critical performance evaluations in complex multimodal reasoning tasks that integrate both visual and text contexts. Furthermore, tasks that demand reasoning across multiple modalities pose greater challenges and require a deep understanding of multimodal contexts. In this paper, we introduce a comprehensive assessment framework named MM-InstructEval, which integrates a diverse array of metrics to provide an extensive evaluation of the performance of various models and instructions across a broad range of multimodal reasoning tasks with vision-text contexts. MM-InstructEval enhances the research on the performance of MLLMs in complex multimodal reasoning tasks, facilitating a more thorough and holistic zero-shot evaluation of MLLMs. We firstly utilize the "Best Performance" metric to determine the upper performance limit of each model across various datasets. The "Mean Relative Gain" metric provides an analysis of the overall performance across different models and instructions, while the "Stability" metric evaluates their sensitivity to variations. Historically, the research has focused on evaluating models independently or solely assessing instructions, overlooking the interplay between models and instructions. To address this gap, we introduce the "Adaptability" metric, designed to quantify the degree of adaptability between models and instructions. Evaluations are conducted on 31 models (23 MLLMs) across 16 multimodal datasets, covering 6 tasks, with 10 distinct instructions. The extensive analysis enables us to derive novel insights.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

北京阿比特科技有限公司