亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose \textsf{F}air \textsf{M}essage \textsf{P}assing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP \textit{explicitly} renders sensitive attribute usage in \textit{forward propagation} for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together. In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available in {\url{//github.com/zhimengj0326/FMP}}.

相關內容

Quantized neural networks (QNNs) have received increasing attention in resource-constrained scenarios due to their exceptional generalizability. However, their robustness against realistic black-box adversarial attacks has not been extensively studied. In this scenario, adversarial transferability is pursued across QNNs with different quantization bitwidths, which particularly involve unknown architectures and defense methods. Previous studies claim that transferability is difficult to achieve across QNNs with different bitwidths on the condition that they share the same architecture. However, we discover that under different architectures, transferability can be largely improved by using a QNN quantized with an extremely low bitwidth as the substitute model. We further improve the attack transferability by proposing \textit{quantization aware attack} (QAA), which fine-tunes a QNN substitute model with a multiple-bitwidth training objective. In particular, we demonstrate that QAA addresses the two issues that are commonly known to hinder transferability: 1) quantization shifts and 2) gradient misalignments. Extensive experimental results validate the high transferability of the QAA to diverse target models. For instance, when adopting the ResNet-34 substitute model on ImageNet, QAA outperforms the current best attack in attacking standardly trained DNNs, adversarially trained DNNs, and QNNs with varied bitwidths by 4.3\% $\sim$ 20.9\%, 8.7\% $\sim$ 15.5\%, and 2.6\% $\sim$ 31.1\% (absolute), respectively. In addition, QAA is efficient since it only takes one epoch for fine-tuning. In the end, we empirically explain the effectiveness of QAA from the view of the loss landscape. Our code is available at ~\url{//github.com/yyl-github-1896/QAA/}.

Deep neural networks (DNNs) have demonstrated remarkable performance across various tasks, including image and speech recognition. However, maximizing the effectiveness of DNNs requires meticulous optimization of numerous hyperparameters and network parameters through training. Moreover, high-performance DNNs entail many parameters, which consume significant energy during training. In order to overcome these challenges, researchers have turned to spiking neural networks (SNNs), which offer enhanced energy efficiency and biologically plausible data processing capabilities, rendering them highly suitable for sensory data tasks, particularly in neuromorphic data. Despite their advantages, SNNs, like DNNs, are susceptible to various threats, including adversarial examples and backdoor attacks. Yet, the field of SNNs still needs to be explored in terms of understanding and countering these attacks. This paper delves into backdoor attacks in SNNs using neuromorphic datasets and diverse triggers. Specifically, we explore backdoor triggers within neuromorphic data that can manipulate their position and color, providing a broader scope of possibilities than conventional triggers in domains like images. We present various attack strategies, achieving an attack success rate of up to 100% while maintaining a negligible impact on clean accuracy. Furthermore, we assess these attacks' stealthiness, revealing that our most potent attacks possess significant stealth capabilities. Lastly, we adapt several state-of-the-art defenses from the image domain, evaluating their efficacy on neuromorphic data and uncovering instances where they fall short, leading to compromised performance.

Mendelian randomization (MR) considers using genetic variants as instrumental variables (IVs) to infer causal effects in observational studies. However, the validity of causal inference in MR can be compromised when the IVs are potentially invalid. In this work, we propose a new method, MR-Local, to infer the causal effect in the existence of possibly invalid IVs. By leveraging the distribution of ratio estimates around the true causal effect, MR-Local selects the cluster of ratio estimates with the least uncertainty and performs causal inference within it. We establish the asymptotic normality of our estimator in the two-sample summary-data setting under either the plurality rule or the balanced pleiotropy assumption. Extensive simulations and analyses of real datasets demonstrate the reliability of our approach.

Deep neural networks have exhibited remarkable performance in a variety of computer vision fields, especially in semantic segmentation tasks. Their success is often attributed to multi-level feature fusion, which enables them to understand both global and local information from an image. However, we found that multi-level features from parallel branches are on different scales. The scale disequilibrium is a universal and unwanted flaw that leads to detrimental gradient descent, thereby degrading performance in semantic segmentation. We discover that scale disequilibrium is caused by bilinear upsampling, which is supported by both theoretical and empirical evidence. Based on this observation, we propose injecting scale equalizers to achieve scale equilibrium across multi-level features after bilinear upsampling. Our proposed scale equalizers are easy to implement, applicable to any architecture, hyperparameter-free, implementable without requiring extra computational cost, and guarantee scale equilibrium for any dataset. Experiments showed that adopting scale equalizers consistently improved the mIoU index across various target datasets, including ADE20K, PASCAL VOC 2012, and Cityscapes, as well as various decoder choices, including UPerHead, PSPHead, ASPPHead, SepASPPHead, and FCNHead.

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Knowledge graph embedding models learn the representations of entities and relations in the knowledge graphs for predicting missing links (relations) between entities. Their effectiveness are deeply affected by the ability of modeling and inferring different relation patterns such as symmetry, asymmetry, inversion, composition and transitivity. Although existing models are already able to model many of these relations patterns, transitivity, a very common relation pattern, is still not been fully supported. In this paper, we first theoretically show that the transitive relations can be modeled with projections. We then propose the Rot-Pro model which combines the projection and relational rotation together. We prove that Rot-Pro can infer all the above relation patterns. Experimental results show that the proposed Rot-Pro model effectively learns the transitivity pattern and achieves the state-of-the-art results on the link prediction task in the datasets containing transitive relations.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

北京阿比特科技有限公司