亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a simple dynamic model for estimating the relative contagiousness of two virus variants. Maximum likelihood estimation and inference is conveniently invariant to variation in the total number of cases over the sample period and can be expressed as a logistic regression. We apply the model to Danish SARS-CoV-2 variant data. We estimate the reproduction numbers of Alpha and Delta to be larger than that of the ancestral variant by a factor of 1.51 [CI 95%: 1.50, 1.53] and 3.28 [CI 95%: 3.01, 3.58], respectively. In a predominately vaccinated population, we estimate Omicron to be 3.15 [CI 95%: 2.83, 3.50] times more infectious than Delta. Forecasting the proportion of an emerging virus variant is straight forward and we proceed to show how the effective reproduction number for a new variant can be estimated without contemporary sequencing results. This is useful for assessing the state of the pandemic in real time as we illustrate empirically with the inferred effective reproduction number for the Alpha variant.

相關內容

Coordinated Multiple views (CMVs) are a visualization technique that simultaneously presents multiple visualizations in separate but linked views. There are many studies that report the advantages (e.g., usefulness for finding hidden relationships) and disadvantages (e.g., cognitive load) of CMVs. But little empirical work exists on the impact of the number of views on visual anlaysis results and processes, which results in uncertainty in the relationship between the view number and visual anlaysis. In this work, we aim at investigating the relationship between the number of coordinated views and users analytic processes and results. To achieve the goal, we implemented a CMV tool for visual anlaysis. We also provided visualization duplication in the tool to help users easily create a desired number of visualization views on-the-fly. We conducted a between-subject study with 44 participants, where we asked participants to solve five analytic problems using the visual tool. Through quantitative and qualitative analysis, we discovered the positive correlation between the number of views and analytic results. We also found that visualization duplication encourages users to create more views and to take various analysis strategies. Based on the results, we provide implications and limitations of our study.

The COVID-19 pandemic has highlighted the urgency for developing more efficient molecular discovery pathways. As exhaustive exploration of the vast chemical space is infeasible, discovering novel inhibitor molecules for emerging drug-target proteins is challenging, particularly for targets with unknown structure or ligands. We demonstrate the broad utility of a single deep generative framework toward discovering novel drug-like inhibitor molecules against two distinct SARS-CoV-2 targets -- the main protease (Mpro) and the receptor binding domain (RBD) of the spike protein. To perform target-aware design, the framework employs a target sequence-conditioned sampling of novel molecules from a generative model. Micromolar-level in vitro inhibition was observed for two candidates (out of four synthesized) for each target. The most potent spike RBD inhibitor also emerged as a rare non-covalent antiviral with broad-spectrum activity against several SARS-CoV-2 variants in live virus neutralization assays. These results show a broadly deployable machine intelligence framework can accelerate hit discovery across different emerging drug-targets.

We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.

This paper studies how well generative adversarial networks (GANs) learn probability distributions from finite samples. Our main results establish the convergence rates of GANs under a collection of integral probability metrics defined through H\"older classes, including the Wasserstein distance as a special case. We also show that GANs are able to adaptively learn data distributions with low-dimensional structures or have H\"older densities, when the network architectures are chosen properly. In particular, for distributions concentrated around a low-dimensional set, we show that the learning rates of GANs do not depend on the high ambient dimension, but on the lower intrinsic dimension. Our analysis is based on a new oracle inequality decomposing the estimation error into the generator and discriminator approximation error and the statistical error, which may be of independent interest.

In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie (2003)'s kappa theorem. Our framework presumes a binary endogenous explanatory variable ("treatment") and a binary instrumental variable, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which we show is weight normalized, is likely to dominate the others in many contexts. A notable exception is in settings with one-sided noncompliance, where certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. We use a simulation study and three empirical applications to illustrate our findings. In applications to causal effects of college education using the college proximity instrument (Card, 1995) and causal effects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both. Overall, our results suggest that (i) the relative performance of different kappa weighting estimators varies with features of the data-generating process; and that (ii) the normalized version of Tan (2006)'s estimator may be an attractive alternative in many contexts. Applied researchers with access to a binary instrumental variable should also consider covariate balancing or doubly robust estimators of the LATE.

Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.

This paper reports on a follow-up study of the work reported in Sakai, which explored suitable evaluation measures for ordinal quantification tasks. More specifically, the present study defines and evaluates, in addition to the quantification measures considered earlier, a few variants of an ordinal quantification measure called Root Normalised Order-aware Divergence (RNOD), as well as a measure which we call Divergence based on Kendall's $\tau$ (DNKT). The RNOD variants represent alternative design choices based on the idea of Sakai's Distance-Weighted sum of squares (DW), while DNKT is designed to ensure that the system's estimated distribution over classes is faithful to the target priorities over classes. As this Priority Preserving Property (PPP) of DNKT may be useful in some applications, we also consider combining some of the existing quantification measures with DNKT. Our experiments with eight ordinal quantification data sets suggest that the variants of RNOD do not offer any benefit over the original RNOD at least in terms of system ranking consistency, i.e., robustness of the system ranking to the choice of test data. Of all ordinal quantification measures considered in this study (including Normalised Match Distance, a.k.a. Earth Mover's Distance), RNOD is the most robust measure overall. Hence the design choice of RNOD is a good one from this viewpoint. Also, DNKT is the worst performer in terms of system ranking consistency. Hence, if DNKT seems appropriate for a task, sample size design should take its statistical instability into account.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司