In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie (2003)'s kappa theorem. Our framework presumes a binary endogenous explanatory variable ("treatment") and a binary instrumental variable, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which we show is weight normalized, is likely to dominate the others in many contexts. A notable exception is in settings with one-sided noncompliance, where certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. We use a simulation study and three empirical applications to illustrate our findings. In applications to causal effects of college education using the college proximity instrument (Card, 1995) and causal effects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both. Overall, our results suggest that (i) the relative performance of different kappa weighting estimators varies with features of the data-generating process; and that (ii) the normalized version of Tan (2006)'s estimator may be an attractive alternative in many contexts. Applied researchers with access to a binary instrumental variable should also consider covariate balancing or doubly robust estimators of the LATE.
We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank $3$): (a) The number of extreme points in an $n$-point order type, chosen uniformly at random from all such order types, is on average $4+o(1)$. For labeled order types, this number has average $4- \frac{8}{n^2 - n +2}$ and variance at most $3$. (b) The (labeled) order types read off a set of $n$ points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e. such sampling typically encounters only a vanishingly small fraction of all order types of the given size. Result (a) generalizes to arbitrary dimension $d$ for labeled order types with the average number of extreme points $2d+o(1)$ and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods allow to show the following relative of the Erd\H{o}s-Szekeres theorem: for any fixed $k$, as $n \to \infty$, a proportion $1 - O(1/n)$ of the $n$-point simple order types contain a triangle enclosing a convex $k$-chain over an edge. For the unlabeled case in (a), we prove that for any antipodal, finite subset of the $2$-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral or one of $A_4$, $S_4$ or $A_5$ (and each case is possible). These are the finite subgroups of $SO(3)$ and our proof follows the lines of their characterization by Felix Klein.
A recent cohort study revealed a positive correlate between major structural birth defects in infants and a certain medication taken by pregnant women. To draw valid causal inference, an outstanding problem to overcome was the missing birth defect outcomes among pregnancy losses resulting from spontaneous abortion. This led to missing not at random since, according to the theory of "terathanasia", a defected fetus is more likely to be spontaneously aborted. Other complications in the data included left truncation, right censoring, observational nature, and rare events. In addition, the previous analysis stratified on live birth against spontaneous abortion, which was itself a post-exposure variable and hence did not lead to a causal interpretation of the stratified results. In this paper we aim to estimate and provide inference for the causal parameters of scientific interest, including the principal effects, making use of the missing data mechanism informed by "terathanasia". The rare events with missing outcomes led to multiple sensitivity analyses where the causal parameters can be estimated with better confidence in each setting. Our findings should shed light on how studies on causal effects of medication or other exposures during pregnancy may be analyzed using state-of-the-art methodologies.
Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this paper proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model [Ros2002, Tan2006], and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis problem as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The result is a predictive interval that has guaranteed nominal coverage of the ITE, a method that provides coverage with distribution-free and nonasymptotic guarantees. We evaluate the method on synthetic data and illustrate its application in an observational study.
Finding the features relevant to the difference in treatment effects is essential to unveil the underlying causal mechanisms. Existing methods seek such features by measuring how greatly the feature attributes affect the degree of the {\it conditional average treatment effect} (CATE). However, these methods may overlook important features because CATE, a measure of the average treatment effect, cannot detect differences in distribution parameters other than the mean (e.g., variance). To resolve this weakness of existing methods, we propose a feature selection framework for discovering {\it distributional treatment effect modifiers}. We first formulate a feature importance measure that quantifies how strongly the feature attributes influence the discrepancy between potential outcome distributions. Then we derive its computationally efficient estimator and develop a feature selection algorithm that can control the type I error rate to the desired level. Experimental results show that our framework successfully discovers important features and outperforms the existing mean-based method.
In this paper, a new weighted average estimator (WAVE) is proposed to enhance the performance of the simple-averaging based distributed estimator, under a general loss with a high dimensional parameter. To obtain an efficient estimator, a weighted least-square ensemble framework plus an adaptive $L_1$ penalty is proposed, in which the local estimator is estimated via the adaptive-lasso and the weight is inversely proportional to the variance of local estimators. It can be proved that WAVE enjoys the same asymptotic properties as the global estimator and simultaneously spend a very low communication cost, only requiring the local worker to deliver two vectors to the master. Moreover, it is shown that WAVE is effective even when the samples across local workers have different mean and covariance. In particular, the asymptotic normality is established under such conditions, while other competitors may not own this property. The effectiveness of WAVE is further illustrated by an extensive numerical study and a real data analysis.
Studies have shown that the effect an exposure may have on a disease can vary for different subtypes of the same disease. However, existing approaches to estimate and compare these effects largely overlook causality. In this paper, we study the effect smoking may have on having colorectal cancer subtypes defined by a trait known as microsatellite instability (MSI). We use principal stratification to propose an alternative causal estimand, the Subtype-Free Average Causal Effect (SF-ACE). The SF-ACE is the causal effect of the exposure among those who would be free from other disease subtypes under any exposure level. We study non-parametric identification of the SF-ACE, and discuss different monotonicity assumptions, which are more nuanced than in the standard setting. As is often the case with principal stratum effects, the assumptions underlying the identification of the SF-ACE from the data are untestable and can be too strong. Therefore, we also develop sensitivity analysis methods that relax these assumptions. We present three different estimators, including a doubly-robust estimator, for the SF-ACE. We implement our methodology for data from two large cohorts to study the heterogeneity in the causal effect of smoking on colorectal cancer with respect to MSI subtypes.
In combinatorial causal bandits (CCB), the learning agent chooses at most $K$ variables in each round to intervene, collects feedback from the observed variables, with the goal of minimizing expected regret on the target variable $Y$. Different from all prior studies on causal bandits, CCB needs to deal with exponentially large action space. We study under the context of binary generalized linear models (BGLMs) with a succinct parametric representation of the causal models. We present the algorithm BGLM-OFU for Markovian BGLMs (i.e. no hidden variables) based on the maximum likelihood estimation method, and show that it achieves $O(\sqrt{T}\log T)$ regret, where $T$ is the time horizon. For the special case of linear models with hidden variables, we apply causal inference techniques such as the do-calculus to convert the original model into a Markovian model, and then show that our BGLM-OFU algorithm and another algorithm based on the linear regression both solve such linear models with hidden variables. Our novelty includes (a) considering the combinatorial intervention action space, (b) considering general causal models including ones with hidden variables, (c) integrating and adapting techniques from diverse studies such as generalized linear bandits and online influence maximization, and (d) not relying on unrealistic assumptions such as knowing the joint distribution of the parents of $Y$ under all interventions used in some prior studies.
Three critical issues for causal inference that often occur in modern, complicated experiments are interference, treatment nonadherence, and missing outcomes. A great deal of research efforts has been dedicated to developing causal inferential methodologies that address these issues separately. However, methodologies that can address these issues simultaneously are lacking. We propose a Bayesian causal inference methodology to address this gap. Our methodology extends existing causal frameworks and methods, specifically, two-staged randomized experiments and the principal stratification framework. In contrast to existing methods that invoke strong structural assumptions to identify principal causal effects, our Bayesian approach uses flexible distributional models that can accommodate the complexities of interference and missing outcomes, and that ensure that principal causal effects are weakly identifiable. We illustrate our methodology via simulation studies and a re-analysis of real-life data from an evaluation of India's National Health Insurance Program. Our methodology enables us to identify new significant causal effects that were not identified in past analyses. Ultimately, our simulation studies and case study demonstrate how our methodology can yield more informative analyses in modern experiments with interference, treatment nonadherence, missing outcomes, and complicated outcome generation mechanisms.
Aggregating signals from a collection of noisy sources is a fundamental problem in many domains including crowd-sourcing, multi-agent planning, sensor networks, signal processing, voting, ensemble learning, and federated learning. The core question is how to aggregate signals from multiple sources (e.g. experts) in order to reveal an underlying ground truth. While a full answer depends on the type of signal, correlation of signals, and desired output, a problem common to all of these applications is that of differentiating sources based on their quality and weighting them accordingly. It is often assumed that this differentiation and aggregation is done by a single, accurate central mechanism or agent (e.g. judge). We complicate this model in two ways. First, we investigate the setting with both a single judge, and one with multiple judges. Second, given this multi-agent interaction of judges, we investigate various constraints on the judges' reporting space. We build on known results for the optimal weighting of experts and prove that an ensemble of sub-optimal mechanisms can perform optimally under certain conditions. We then show empirically that the ensemble approximates the performance of the optimal mechanism under a broader range of conditions.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.