亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The weight distribution of error correction codes is a critical determinant of their error-correcting performance, making enumeration of utmost importance. In the case of polar codes, the minimum weight $\wm$ (which is equal to minimum distance $d$) is the only weight for which an explicit enumerator formula is currently available. Having closed-form weight enumerators for polar codewords with weights greater than the minimum weight not only simplifies the enumeration process but also provides valuable insights towards constructing better polar-like codes. In this paper, we contribute towards understanding the algebraic structure underlying higher weights by analyzing Minkowski sums of orbits. Our approach builds upon the lower triangular affine (LTA) group of decreasing monomial codes. Specifically, we propose a closed-form expression for the enumeration of codewords with weight $1.5\wm$. Our simulations demonstrate the potential for extending this method to higher weights.

相關內容

We present an implicit-explicit finite volume scheme for two-fluid single-temperature flow in all Mach number regimes which is based on a symmetric hyperbolic thermodynamically compatible description of the fluid flow. The scheme is stable for large time steps controlled by the interface transport and is computational efficient due to a linear implicit character. The latter is achieved by linearizing along constant reference states given by the asymptotic analysis of the single-temperature model. Thus, the use of a stiffly accurate IMEX Runge Kutta time integration and the centered treatment of pressure based quantities provably guarantee the asymptotic preserving property of the scheme for weakly compressible Euler equations with variable volume fraction. The properties of the first and second order scheme are validated by several numerical test cases.

In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.

A coupled hybridizable discontinuous Galerkin (HDG) and boundary integral (BI) method is proposed to efficiently analyze electromagnetic scattering from inhomogeneous/composite objects. The coupling between the HDG and the BI equations is realized using the numerical flux operating on the equivalent current and the global unknown of the HDG. This approach yields sparse coupling matrices upon discretization. Inclusion of the BI equation ensures that the only error in enforcing the radiation conditions is the discretization. However, the discretization of this equation yields a dense matrix, which prohibits the use of a direct matrix solver on the overall coupled system as often done with traditional HDG schemes. To overcome this bottleneck, a "hybrid" method is developed. This method uses an iterative scheme to solve the overall coupled system but within the matrix-vector multiplication subroutine of the iterations, the inverse of the HDG matrix is efficiently accounted for using a sparse direct matrix solver. The same subroutine also uses the multilevel fast multipole algorithm to accelerate the multiplication of the guess vector with the dense BI matrix. The numerical results demonstrate the accuracy, the efficiency, and the applicability of the proposed HDG-BI solver.

The fundamental problem of weighted sampling involves sampling of satisfying assignments of Boolean formulas, which specify sampling sets, and according to distributions defined by pre-specified weight functions to weight functions. The tight integration of sampling routines in various applications has highlighted the need for samplers to be incremental, i.e., samplers are expected to handle updates to weight functions. The primary contribution of this work is an efficient knowledge compilation-based weighted sampler, INC, designed for incremental sampling. INC builds on top of the recently proposed knowledge compilation language, OBDD[AND], and is accompanied by rigorous theoretical guarantees. Our extensive experiments demonstrate that INC is faster than state-of-the-art approach for majority of the evaluation. In particular, we observed a median of 1.69X runtime improvement over the prior state-of-the-art approach.

In extreme value theory and other related risk analysis fields, probability weighted moments (PWM) have been frequently used to estimate the parameters of classical extreme value distributions. This method-of-moment technique can be applied when second moments are finite, a reasonable assumption in many environmental domains like climatological and hydrological studies. Three advantages of PWM estimators can be put forward: their simple interpretations, their rapid numerical implementation and their close connection to the well-studied class of U-statistics. Concerning the later, this connection leads to precise asymptotic properties, but non asymptotic bounds have been lacking when off-the-shelf techniques (Chernoff method) cannot be applied, as exponential moment assumptions become unrealistic in many extreme value settings. In addition, large values analysis is not immune to the undesirable effect of outliers, for example, defective readings in satellite measurements or possible anomalies in climate model runs. Recently, the treatment of outliers has sparked some interest in extreme value theory, but results about finite sample bounds in a robust extreme value theory context are yet to be found, in particular for PWMs or tail index estimators. In this work, we propose a new class of robust PWM estimators, inspired by the median-of-means framework of Devroye et al. (2016). This class of robust estimators is shown to satisfy a sub-Gaussian inequality when the assumption of finite second moments holds. Such non asymptotic bounds are also derived under the general contamination model. Our main proposition confirms theoretically a trade-off between efficiency and robustness. Our simulation study indicates that, while classical estimators of PWMs can be highly sensitive to outliers.

Non-overlapping codes have been studied for almost 60 years. In such a code, no proper, non-empty prefix of any codeword is a suffix of any codeword. In this paper, we study codes in which overlaps of certain specified sizes are forbidden. We prove some general bounds and we give several constructions in the case of binary codes. Our techniques also allow us to provide an alternative, elementary proof of a lower bound on non-overlapping codes due to Levenshtein in 1964.

In epidemiological studies, the capture-recapture (CRC) method is a powerful tool that can be used to estimate the number of diseased cases or potentially disease prevalence based on data from overlapping surveillance systems. Estimators derived from log-linear models are widely applied by epidemiologists when analyzing CRC data. The popularity of the log-linear model framework is largely associated with its accessibility and the fact that interaction terms can allow for certain types of dependency among data streams. In this work, we shed new light on significant pitfalls associated with the log-linear model framework in the context of CRC using real data examples and simulation studies. First, we demonstrate that the log-linear model paradigm is highly exclusionary. That is, it can exclude, by design, many possible estimates that are potentially consistent with the observed data. Second, we clarify the ways in which regularly used model selection metrics (e.g., information criteria) are fundamentally deceiving in the effort to select a best model in this setting. By focusing attention on these important cautionary points and on the fundamental untestable dependency assumption made when fitting a log-linear model to CRC data, we hope to improve the quality of and transparency associated with subsequent surveillance-based CRC estimates of case counts.

In this study, we examine numerical approximations for 2nd-order linear-nonlinear differential equations with diverse boundary conditions, followed by the residual corrections of the first approximations. We first obtain numerical results using the Galerkin weighted residual approach with Bernstein polynomials. The generation of residuals is brought on by the fact that our first approximation is computed using numerical methods. To minimize these residuals, we use the compact finite difference scheme of 4th-order convergence to solve the error differential equations in accordance with the error boundary conditions. We also introduce the formulation of the compact finite difference method of fourth-order convergence for the nonlinear BVPs. The improved approximations are produced by adding the error values derived from the approximations of the error differential equation to the weighted residual values. Numerical results are compared to the exact solutions and to the solutions available in the published literature to validate the proposed scheme, and high accuracy is achieved in all cases

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司