Time series in real-world applications often have missing observations, making typical analytical methods unsuitable. One method for dealing with missing data is the concept of amplitude modulation. While this principle works with any data, here, missing data for unbounded and bounded count time series are investigated, where tailor-made dispersion and skewness statistics are used for model diagnostics. General closed-form asymptotic formulas are derived for such statistics with only weak assumptions on the underlying process. Moreover, closed-form formulas are derived for the popular special cases of Poisson and binomial autoregressive processes, always under the assumption that missingness occurs. The finite-sample performances of the considered asymptotic approximations are analyzed with simulations. The practical application of the corresponding dispersion and skewness tests under missing data is demonstrated with three real-data examples.
Units of measure with prefixes and conversion rules are given a formal semantic model in terms of categorial group theory. Basic structures and both natural and contingent semantic operations are defined. Conversion rules are represented as a class of ternary relations with both group-like and category-like properties. A hierarchy of subclasses is explored, each satisfying stronger useful algebraic properties than the preceding, culminating in a direct efficient conversion-by-rewriting algorithm.
The remarkable instruction-following capability of large language models (LLMs) has sparked a growing interest in automatically finding good prompts, i.e., prompt optimization. Most existing works follow the scheme of selecting from a pre-generated pool of candidate prompts. However, these designs mainly focus on the generation strategy, while limited attention has been paid to the selection method. Especially, the cost incurred during the selection (e.g., accessing LLM and evaluating the responses) is rarely explicitly considered. To overcome this limitation, this work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint. TRIPLE is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB); thus, it is capable of leveraging the rich toolbox from BAI-FB systematically and also incorporating unique characteristics of prompt optimization. Extensive experiments on multiple well-adopted tasks using various LLMs demonstrate the remarkable performance improvement of TRIPLE over baselines while satisfying the limited budget constraints. As an extension, variants of TRIPLE are proposed to efficiently select examples for few-shot prompts, also achieving superior empirical performance.
We introduce an improved CNOT synthesis algorithm that considers nearest-neighbour interactions and CNOT gate error rates in noisy intermediate-scale quantum (NISQ) hardware. Compared to IBM's Qiskit compiler, it improves the fidelity of a synthesized CNOT circuit by about 2 times on average (up to 9 times). It lowers the synthesized CNOT count by a factor of 13 on average (up to a factor of 162). Our contribution is twofold. First, we define a $\textsf{Cost}$ function by approximating the average gate fidelity $F_{avg}$. According to the simulation results, $\textsf{Cost}$ fits the error probability of a noisy CNOT circuit, $\textsf{Prob} = 1 - F_{avg}$, much tighter than the commonly used cost functions. On IBM's fake Nairobi backend, it matches $\textsf{Prob}$ to within $10^{-3}$. On other backends, it fits $\textsf{Prob}$ to within $10^{-1}$. $\textsf{Cost}$ accurately quantifies the dynamic error characteristics and shows remarkable scalability. Second, we propose a noise-aware CNOT routing algorithm, NAPermRowCol, by adapting the leading Steiner-tree-based connectivity-aware CNOT synthesis algorithms. A weighted edge is used to encode a CNOT gate error rate and $\textsf{Cost}$-instructed heuristics are applied to each reduction step. NAPermRowCol does not use ancillary qubits and is not restricted to certain initial qubit maps. Compared with algorithms that are noise-agnostic, it improves the fidelity of a synthesized CNOT circuit across varied NISQ hardware. Depending on the benchmark circuit and the IBM backend selected, it lowers the synthesized CNOT count up to $56.95\%$ compared to ROWCOL and up to $21.62\%$ compared to PermRowCol. It reduces the synthesis $\textsf{Cost}$ up to $25.71\%$ compared to ROWCOL and up to $9.12\%$ compared to PermRowCol. Our method can be extended to route a more general quantum circuit, giving a powerful new tool for compiling on NISQ devices.
In the present paper, an algorithm for the numerical solution of the external Dirichlet generalized harmonic problem for a sphere by the method of probabilistic solution (MPS) is given, where generalized indicates that a boundary function has a finite number of first kind discontinuity curves. The algorithm consists of the following main stages: (1) the transition from an infinite domain to a finite domain by an inversion; (2) the consideration of a new Dirichlet generalized harmonic problem on the basis of Kelvin theorem for the obtained finite domain; (3) the numerical solution of the new problem for the finite domain by the MPS, which in turn is based on a computer simulation of the Weiner process; (4) finding the probabilistic solution of the posed generalized problem at any fixed points of the infinite domain by the solution of the new problem. For illustration, numerical examples are considered and results are presented.
Integrating external knowledge into large language models (LLMs) presents a promising solution to overcome the limitations imposed by their antiquated and static parametric memory. Prior studies, however, have tended to over-reliance on external knowledge, underestimating the valuable contributions of an LLMs' intrinsic parametric knowledge. The efficacy of LLMs in blending external and parametric knowledge remains largely unexplored, especially in cases where external knowledge is incomplete and necessitates supplementation by their parametric knowledge. We propose to deconstruct knowledge fusion into four distinct scenarios, offering the first thorough investigation of LLM behavior across each. We develop a systematic pipeline for data construction and knowledge infusion to simulate these fusion scenarios, facilitating a series of controlled experiments. Our investigation reveals that enhancing parametric knowledge within LLMs can significantly bolster their capability for knowledge integration. Nonetheless, we identify persistent challenges in memorizing and eliciting parametric knowledge, and determining parametric knowledge boundaries. Our findings aim to steer future explorations on harmonizing external and parametric knowledge within LLMs.
When developing empirical equations, domain experts require these to be accurate and adhere to physical laws. Often, constants with unknown units need to be discovered alongside the equations. Traditional unit-aware genetic programming (GP) approaches cannot be used when unknown constants with undetermined units are included. This paper presents a method for dimensional analysis that propagates unknown units as ''jokers'' and returns the magnitude of unit violations. We propose three methods, namely evolutive culling, a repair mechanism, and a multi-objective approach, to integrate the dimensional analysis in the GP algorithm. Experiments on datasets with ground truth demonstrate comparable performance of evolutive culling and the multi-objective approach to a baseline without dimensional analysis. Extensive analysis of the results on datasets without ground truth reveals that the unit-aware algorithms make only low sacrifices in accuracy, while producing unit-adherent solutions. Overall, we presented a promising novel approach for developing unit-adherent empirical equations.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.