亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Collaborative perception allows each agent to enhance its perceptual abilities by exchanging messages with others. It inherently results in a trade-off between perception ability and communication costs. Previous works transmit complete full-frame high-dimensional feature maps among agents, resulting in substantial communication costs. To promote communication efficiency, we propose only transmitting the information needed for the collaborator's downstream task. This pragmatic communication strategy focuses on three key aspects: i) pragmatic message selection, which selects task-critical parts from the complete data, resulting in spatially and temporally sparse feature vectors; ii) pragmatic message representation, which achieves pragmatic approximation of high-dimensional feature vectors with a task-adaptive dictionary, enabling communicating with integer indices; iii) pragmatic collaborator selection, which identifies beneficial collaborators, pruning unnecessary communication links. Following this strategy, we first formulate a mathematical optimization framework for the perception-communication trade-off and then propose PragComm, a multi-agent collaborative perception system with two key components: i) single-agent detection and tracking and ii) pragmatic collaboration. The proposed PragComm promotes pragmatic communication and adapts to a wide range of communication conditions. We evaluate PragComm for both collaborative 3D object detection and tracking tasks in both real-world, V2V4Real, and simulation datasets, OPV2V and V2X-SIM2.0. PragComm consistently outperforms previous methods with more than 32.7K times lower communication volume on OPV2V. Code is available at github.com/PhyllisH/PragComm.

相關內容

This work considers a repeated principal-agent bandit game, where the principal can only interact with her environment through the agent. The principal and the agent have misaligned objectives and the choice of action is only left to the agent. However, the principal can influence the agent's decisions by offering incentives which add up to his rewards. The principal aims to iteratively learn an incentive policy to maximize her own total utility. This framework extends usual bandit problems and is motivated by several practical applications, such as healthcare or ecological taxation, where traditionally used mechanism design theories often overlook the learning aspect of the problem. We present nearly optimal (with respect to a horizon $T$) learning algorithms for the principal's regret in both multi-armed and linear contextual settings. Finally, we support our theoretical guarantees through numerical experiments.

Reaching consensus is key to multi-agent coordination. To accomplish a cooperative task, agents need to coherently select optimal joint actions to maximize the team reward. However, current cooperative multi-agent reinforcement learning (MARL) methods usually do not explicitly take consensus into consideration, which may cause miscoordination problem. In this paper, we propose a model-based consensus mechanism to explicitly coordinate multiple agents. The proposed Multi-agent Goal Imagination (MAGI) framework guides agents to reach consensus with an Imagined common goal. The common goal is an achievable state with high value, which is obtained by sampling from the distribution of future states. We directly model this distribution with a self-supervised generative model, thus alleviating the "curse of dimensinality" problem induced by multi-agent multi-step policy rollout commonly used in model-based methods. We show that such efficient consensus mechanism can guide all agents cooperatively reaching valuable future states. Results on Multi-agent Particle-Environments and Google Research Football environment demonstrate the superiority of MAGI in both sample efficiency and performance.

The problem of distributed optimization requires a group of agents to reach agreement on a parameter that minimizes the average of their local cost functions using information received from their neighbors. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to malicious (or ``Byzantine'') agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or provide analysis under certain assumptions on the statistical properties of the functions at the agents. In this paper, we propose a resilient distributed optimization algorithm for multi-dimensional convex functions. Our scheme involves two filtering steps at each iteration of the algorithm: (1) distance-based and (2) component-wise removal of extreme states. We show that this algorithm can mitigate the impact of up to $F$ Byzantine agents in the neighborhood of each regular node, without knowing the identities of the Byzantine agents in advance. In particular, we show that if the network topology satisfies certain conditions, all of the regular states are guaranteed to asymptotically converge to a bounded region that contains the global minimizer.

Artificial intelligence is seen as increasingly important, and potentially profoundly so, but the fields of AI ethics and AI engineering have not fully recognized that these technologies, including large language models (LLMs), will have massive impacts on animals. We argue that this impact matters, because animals matter morally. As a first experiment in evaluating animal consideration in LLMs, we constructed a proof-of-concept Evaluation System, which assesses LLM responses and biases from multiple perspectives. This system evaluates LLM outputs by two criteria: their truthfulness, and the degree of consideration they give to the interests of animals. We tested OpenAI ChatGPT 4 and Anthropic Claude 2.1 using a set of structured queries and predefined normative perspectives. Preliminary results suggest that the outcomes of the tested models can be benchmarked regarding the consideration they give to animals, and that generated positions and biases might be addressed and mitigated with more developed and validated systems. Our research contributes one possible approach to integrating animal ethics in AI, opening pathways for future studies and practical applications in various fields, including education, public policy, and regulation, that involve or relate to animals and society. Overall, this study serves as a step towards more useful and responsible AI systems that better recognize and respect the vital interests and perspectives of all sentient beings.

The application of eigenvalue theory to dual quaternion Hermitian matrices holds significance in the realm of multi-agent formation control. In this paper, we study the Rayleigh quotient iteration (RQI) for solving the right eigenpairs of dual quaternion Hermitian matrices. Combined with dual representation, the RQI algorithm can effectively compute the extreme eigenvalue along with the associated eigenvector of the large dual quaternion Hermitian matrices. Furthermore, a convergence analysis of the Rayleigh quotient iteration is derived, demonstrating a local convergence rate of at least cubic, which is faster than the linear convergence rate of the power method. Numerical examples are provided to illustrate the high accuracy and low CPU time cost of the proposed Rayleigh quotient iteration compared with the power method for solving the dual quaternion Hermitian eigenvalue problem.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司